
Bioinformatics Toolbox
For Use with MATLAB®

Computation

Visualization

Programming

Reference
Version 2

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Bioinformatics Toolbox Reference
© COPYRIGHT 2003-2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 2005 Online only New for Version 2.1 (Release 14SP2+)
September 2005 Online only Updated for Version 2.1.1 (Release 14SP3)
November 2005 Online only Updated for Version 2.2 (Release 14SP3+)
March 2006 Online only Updated for Version 2.2.1 (Release 2006a)
May 2006 Online only Updated for Version 2.3 (Release 2006a+)

Contents

Functions – By Category

1
Data Formats and Databases . 1-3

Trace Tools . 1-5

Sequence Conversion . 1-5

Sequence Utilities . 1-6

Sequence Statistics . 1-8

Sequence Visualization . 1-9

Pairwise Sequence Alignment . 1-9

Multiple Sequence Alignment . 1-9

Scoring Matrices . 1-10

Phylogenetic Tree Tools . 1-10

Phylogenetic Tree Methods . 1-11

Graph Visualization Methods . 1-12

Gene Ontology Functions . 1-12

Gene Ontology Methods . 1-13

Protein Analysis . 1-13

v

Profile Hidden Markov Models . 1-14

Microarray File Formats . 1-15

Microarray Utility Functions . 1-15

Microarray Data Analysis and Visualization 1-16

Microarray Normalization and Filtering 1-17

Statistical Learning . 1-18

Mass Spectrometry Preprocessing and Visualization . . 1-19

Functions — Alphabetical List

2

Index

vi Contents

1

Functions – By Category

Data Formats and Databases (p. 1-3) Get data into MATLAB® from Web
databases. Read and write to files
using specific sequence data formats.

Trace Tools (p. 1-5) Read data from a SCF file and draw
nucleotide trace plots.

Sequence Conversion (p. 1-5) Convert nucleotide and amino
acid sequences between character
and integer formats, reverse and
complement the order of nucleotide
bases, and translate nucleotides
codons to amino acids.

Sequence Utilities (p. 1-6) Calculate a consensus sequence from
a set of multiply aligned sequences,
run a BLAST search from MATLAB,
and search sequences using regular
expressions.

Sequence Statistics (p. 1-8) Determine base counts, nucleotide
density, codon bias, and CpG islands.
Search for words and identify open
reading frames (ORFs).

Sequence Visualization (p. 1-9) Visualize sequence data.

Pairwise Sequence Alignment
(p. 1-9)

Compare nucleotide or amino acid
sequences using pairwise sequence
alignment functions.

1 Functions – By Category

Multiple Sequence Alignment
(p. 1-9)

Compare sets of nucleotide or amino
acid sequences. Progressively align
sequences using a phylogenetic tree
for guidance.

Scoring Matrices (p. 1-10) Standard scoring matrices such as
the PAM and BLOSUM families of
matrices that alignment functions
use.

Phylogenetic Tree Tools (p. 1-10) Read phylogenetic tree files,
calculate pairwise distances between
sequences and build a phylogenetic
tree.

Phylogenetic Tree Methods (p. 1-11) Select, modify, and plot phylogenetic
trees using phytree object methods.

Graph Visualization Methods
(p. 1-12)

View relationships between data
visually with interactive maps,
hierarchy plots, and pathways.

Gene Ontology Functions (p. 1-12) Read Gene Ontology formatted files.

Gene Ontology Methods (p. 1-13) Import the Gene Ontology database
from the Web and get a subset of the
ontology.

Protein Analysis (p. 1-13) Determine protein characteristics
and simulate enzyme cleavage
reactions.

Profile Hidden Markov Models
(p. 1-14)

Get profile hidden Markov model
data from the PFAM database or
create your own profiles from a set
of sequences.

Microarray File Formats (p. 1-15) Read data from common microarray
file formats including Affymetrix
GeneChip, ImaGene results, and
SPOT files. Read GenePix GPR and
GAL files.

1-2

Data Formats and Databases

Microarray Utility Functions
(p. 1-15)

Using Affymetrix and GeneChip
data sets, get library information
for a probe, gene information from a
probe set, and probe set values from
CEL and CDF information. Show
probe set information from NetAffx
and plot probe set values.

Microarray Data Analysis and
Visualization (p. 1-16)

Analyze and visualize microarray
data with t tests, spatial plots, box
plots, loglog plots, and intensity-ratio
plots.

Microarray Normalization and
Filtering (p. 1-17)

Normalize microarray data with
lowess and mean normalization
functions. Filter raw data for
cleanup before analysis.

Statistical Learning (p. 1-18) Classify and identify features in
data sets, set up cross-validation
experiments, and compare different
classification methods.

Mass Spectrometry Preprocessing
and Visualization (p. 1-19)

Preprocess raw data mass
spectrometry data from instruments,
and analyze spectra to identify
patterns and compounds.

Data Formats and Databases
affyread Read microarray data from

Affymetrix GeneChip file (Windows
32)

agferead Read Agilent Feature Extraction
Software file

blastread Read data from NCBI BLAST report
file

1-3

1 Functions – By Category

celintensityread Read probe intensities from
Affymetrix CEL files (Windows 32)

emblread Read data from EMBL file

fastaread Read data from FASTA file

fastawrite Write to file with FASTA format

galread Read microarray data from GenePix
array list file

genbankread Read data from GenBank file

genpeptread Read data from GenPept file

geosoftread Read data from Gene Expression
Omnibus (GEO) SOFT Sample
(GSM) file

getblast BLAST report from NCBI Web site

getembl Sequence information from EMBL
database

getgenbank Sequence information from GenBank
database

getgenpept Sequence information from GenPept
database

getgeodata Retrieve Gene Expression Omnibus
(GEO) Sample (GSM) data

gethmmalignment Multiple aligned sequences from
PFAM database

gethmmprof Profile Hidden Markov Models
(HMM) from PFAM database

gethmmtree Phylogenetic tree data from PFAM
database

getpdb Protein structure data from Protein
Data Bank (PDB) database

gprread Read microarray data from GenePix
Results (GPR) file

1-4

Trace Tools

imageneread Read microarray data from ImaGene
Results file

jcampread Read JCAMP-DX formatted files

multialignread Read multiple-sequence alignment
file

pdbread Read data from Protein Data Bank
(PDB) file

pfamhmmread Read data from PFAM-HMM file

phytreeread Read phylogenetic tree file

scfread Read trace data from SCF file

sptread Read data from SPOT file

Trace Tools
scfread Read trace data from SCF file

traceplot Draw nucleotide trace plots

Sequence Conversion
aa2int Convert amino acid sequence from

letter to integer representation

aa2nt Convert amino acid sequence to
nucleotide sequence

aminolookup Amino acid codes, abbreviations,
names, and codons

baselookup Nucleotide codes, abbreviations, and
names

1-5

1 Functions – By Category

dna2rna Convert DNA sequence to RNA
sequence

int2aa Convert amino acid sequence from
integer to letter representation

int2nt Convert nucleotide sequence from
integer to letter representation

nt2aa Convert nucleotide sequence to
amino acid sequence

nt2int Convert nucleotide sequence from
letter to integer representation

rna2dna Convert RNA sequence of nucleotides
to DNA sequence

seq2regexp Convert sequence with ambiguous
characters to regular expression

seqcomplement Calculate complementary strand of
nucleotide sequence

seqrcomplement Calculate reverse complement of
nucleotide sequence

seqreverse Reverse the letters or numbers in
nucleotide sequence

Sequence Utilities
aminolookup Amino acid codes, abbreviations,

names, and codons

baselookup Nucleotide codes, abbreviations, and
names

blastncbi Generate remote BLAST request

cleave Cleave amino acid sequence with
enzyme

1-6

Sequence Utilities

geneticcode Nucleotide codon to amino acid
mapping

joinseq Join two sequences to produce
shortest supersequence

oligoprop Calculate nucleotide DNA sequence
properties

palindromes Find palindromes in sequence

pdbdistplot Visualize intermolecular distances
in Protein Data Bank (PDB) file

pdbplot Plot 3-D protein structure

proteinplot Characteristics for amino acid
sequences

ramachandran Draw Ramachandran plot for
Protein Data Bank (PDB) data

randseq Generate random sequence from
finite alphabet

rebasecuts Find restriction enzymes that cut
protein sequence

restrict Split nucleotide sequence at
restriction site

revgeneticcode Reverse mapping for genetic code

seqconsensus Calculate consensus sequence

seqdisp Format long sequence output for
easy viewing

seqlogo Sequence logo for nucleotide and
amino acid sequences

seqmatch Find matches for every string in
library

seqprofile Calculate sequence profile from set
of multiply aligned sequences

seqshoworfs Display open reading frames in
sequence

1-7

1 Functions – By Category

Sequence Statistics
aacount Count amino acids in sequence

aminolookup Amino acid codes, abbreviations,
names, and codons

basecount Count nucleotides in sequence

baselookup Nucleotide codes, abbreviations, and
names

codonbias Calculate codon frequency for each
amino acid in DNA sequence

codoncount Count codons in nucleotide sequence

cpgisland Locate CpG islands in DNA sequence

dimercount Count dimers in sequence

isoelectric Estimate isoelectric point for amino
acid sequence

molweight Calculate molecular weight of amino
acid sequence

nmercount Count number of n-mers in
nucleotide or amino acid sequence

ntdensity Plot density of nucleotides along
sequence

seqshowwords Graphically display words in
sequence

seqwordcount Count number of occurrences of word
in sequence

1-8

Sequence Visualization

Sequence Visualization
featuresmap Draw linear or circular map of

features from GenBank structure

seqtool Open interactive tool to explore
biological sequences

Pairwise Sequence Alignment
fastaread Read data from FASTA file

nwalign Globally align two sequences using
Needleman-Wunsch algorithm

seqdotplot Create dot plot of two sequences

showalignment Sequence alignment with color

swalign Locally align two sequences using
Smith-Waterman algorithm

Multiple Sequence Alignment
fastaread Read data from FASTA file

multialign Align multiple sequences using
progressive method

multialignread Read multiple-sequence alignment
file

multialignviewer Open viewer for multiple sequence
alignments

1-9

1 Functions – By Category

profalign Align two profiles using
Needleman-Wunsch global
alignment

showalignment Sequence alignment with color

Scoring Matrices
blosum BLOSUM scoring matrix

dayhoff Dayhoff scoring matrix

gonnet Gonnet scoring matrix

nuc44 NUC44 scoring matrix for nucleotide
sequences

pam PAM scoring matrix

Phylogenetic Tree Tools
dnds Estimate synonymous and

nonsynonymous substitution
rates

dndsml Estimate
synonymous-nonsynonymous
substitution rates by the maximum
likelihood method

gethmmtree Phylogenetic tree data from PFAM
database

phytreeread Read phylogenetic tree file

phytreetool View, edit, and explore phylogenetic
tree data

1-10

Phylogenetic Tree Methods

phytreewrite Write phylogenetic tree object to
Newick-formatted file

seqlinkage Construct phylogenetic tree from
pairwise distances

seqneighjoin Neighbor-joining method for
phylogenetic tree reconstruction

seqpdist Calculate pairwise distance between
sequences

Phylogenetic Tree Methods
get (phytree) Information about phylogenetic tree

object

getbyname (phytree) Branches and leaves from phytree
object

getcanonical (phytree) Calculate canonical form of
phylogenetic tree

getnewickstr (phytree) Create Newick-formatted string

pdist (phytree) Calculate pairwise patristic
distances in phytree object

phytree Create phytree object

plot (phytree) Draw phylogenetic tree

prune (phytree) Remove branch nodes from
phylogenetic tree

reroot (phytree) Change root of phylogenetic tree

select (phytree) Select tree branches and leaves in
phytree object

subtree (phytree) Extract phylogenetic subtree

1-11

1 Functions – By Category

view (phytree) View phylogenetic tree

weights (phytree) Calculate weights for phylogenetic
tree

Graph Visualization Methods
biograph Create biograph object

dolayout (biograph) Calculate node positions and edge
trajectories

getancestors (biograph) Find ancestors in biograph object

getdescendants (biograph) Find descendants in biograph object

getedgesbynodeid (biograph) Handles to edges in biograph object

getnodesbyid (biograph) Handles to nodes

getrelatives (biograph) Find relatives in biograph object

view (biograph) Draw figure from biograph object

Gene Ontology Functions
goannotread Annotations from Gene Ontology

annotated file

num2goid Convert numbers to Gene Ontology
IDs

1-12

Gene Ontology Methods

Gene Ontology Methods
geneont Create geneont object

getancestors (geneont) Numeric IDs for ancestors of Gene
Ontology term

getdescendants (geneont) Numeric IDs for descendants of
Gene Ontology term

getmatrix (geneont) Convert geneont object into
relationship matrix

getrelatives (geneont) Numeric IDs for relatives of Gene
Ontology term

Protein Analysis
aacount Count amino acids in sequence

aminolookup Amino acid codes, abbreviations,
names, and codons

atomiccomp Calculate atomic composition of
protein

cleave Cleave amino acid sequence with
enzyme

isoelectric Estimate isoelectric point for amino
acid sequence

molweight Calculate molecular weight of amino
acid sequence

pdbdistplot Visualize intermolecular distances
in Protein Data Bank (PDB) file

pdbplot Plot 3-D protein structure

proteinplot Characteristics for amino acid
sequences

1-13

1 Functions – By Category

ramachandran Draw Ramachandran plot for
Protein Data Bank (PDB) data

rebasecuts Find restriction enzymes that cut
protein sequence

Profile Hidden Markov Models
gethmmalignment Multiple aligned sequences from

PFAM database

gethmmprof Profile Hidden Markov Models
(HMM) from PFAM database

gethmmtree Phylogenetic tree data from PFAM
database

hmmprofalign Align query sequence to profile using
hidden Markov model alignment

hmmprofestimate Estimate profile Hidden Markov
Model (HMM) parameters using
pseudocounts

hmmprofgenerate Generate random sequence drawn
from profile Hidden Markov Model
(HMM

hmmprofmerge Concatenate prealigned strings of
several sequences to profile Hidden
Markow Model (HMM)

hmmprofstruct Create profile Hidden Markov Model
(HMM) structure

pfamhmmread Read data from PFAM-HMM file

showhmmprof Plot Hidden Markov Model (HMM)
profile

1-14

Microarray File Formats

Microarray File Formats
affyread Read microarray data from

Affymetrix GeneChip file (Windows
32)

agferead Read Agilent Feature Extraction
Software file

celintensityread Read probe intensities from
Affymetrix CEL files (Windows 32)

galread Read microarray data from GenePix
array list file

geosoftread Read data from Gene Expression
Omnibus (GEO) SOFT Sample
(GSM) file

getgeodata Retrieve Gene Expression Omnibus
(GEO) Sample (GSM) data

gprread Read microarray data from GenePix
Results (GPR) file

imageneread Read microarray data from ImaGene
Results file

sptread Read data from SPOT file

Microarray Utility Functions
magetfield Extract data from a microarray

structure

probelibraryinfo Probe set library information for
probe results

probesetlink Link to NetAffx Web site

probesetlookup Gene name for probe set

1-15

1 Functions – By Category

probesetplot Plot values for Affymetrix CHP file
probe set

probesetvalues Probe set values from probe results

Microarray Data Analysis and Visualization
clustergram Create dendrogram and heat map

maboxplot Box plot for microarray data

maimage Spatial image for microarray data

mairplot Intensity versus ratio scatter plot for
microarray signals

maloglog Create loglog plot of microarray data

mapcaplot Create Principal Component plot of
expression profile data

mattest Perform two-sample, two-tailed
t-test to evaluate differential
expression of genes from two
experimental conditions or
phenotypes

mavolcanoplot Create significance versus gene
expression ratio (fold change) scatter
plot of microarray data

redgreencmap Red and green colormap

1-16

Microarray Normalization and Filtering

Microarray Normalization and Filtering
affyinvarsetnorm Perform rank invariant set

normalization on probe intensities
from multiple Affymetrix CEL or
DAT files

exprprofrange Calculate range of gene expression
profiles

exprprofvar Calculate variance of gene
expression profiles

geneentropyfilter Remove genes with low entropy
expression values

genelowvalfilter Remove gene profiles with low
absolute values

generangefilter Remove gene profiles with small
profile ranges

genevarfilter Filter genes with small profile
variance

mainvarsetnorm Perform rank invariant set
normalization on gene expression
values from two experimental
conditions or phenotypes

malowess Smooth microarray data using
Lowess method

manorm Normalize microarray data

quantilenorm Quantile normalization over
multiple arrays

1-17

1 Functions – By Category

rmabackadj Perform background adjustment on
Affymetrix microarray probe-level
data using Robust Multi-array
Average (RMA) procedure

rmasummary Calculate gene (probe set) expression
values from Affymetrix microarray
probe-level data using Robust
Multi-array Average (RMA)
procedure

Statistical Learning
classperf Evaluate performance of classifier

crossvalind Generate cross-validation indices

knnclassify Classify data using nearest neighbor
method

knnimpute Impute missing data using
nearest-neighbor method

randfeatures Generate randomized subset of
features

rankfeatures Rank key features by class
separability criteria

svmclassify Classify data using support vector
machine

svmtrain Train support vector machine
classifier

1-18

Mass Spectrometry Preprocessing and Visualization

Mass Spectrometry Preprocessing and Visualization
jcampread Read JCAMP-DX formatted files

msalign Align peaks in mass spectrum to
reference peaks

msbackadj Correct baseline of mass spectrum

msheatmap Color image for set of spectra

mslowess Smooth mass spectrum using
nonparametric method

msnorm Normalize set of mass spectra

msresample Resample mass spectrometry signal

mssgolay Smooth mass spectrum with
least-squares polynomial

msviewer Explore MS spectrum or set of
spectra

1-19

1 Functions – By Category

1-20

2

Functions — Alphabetical
List

aa2int

Purpose Convert amino acid sequence from letter to integer representation

Syntax SeqInt = aa2int(SeqChar)

Arguments
SeqChar Amino acid sequence represented with letters. Enter

a character string with characters from the table
Mapping Amino Acid Letters to Integers (unknown
characters are mapped to 0). Integers are arbitrarily
assigned to IUB/IUPAC letters. You can also enter a
structure with the field Sequence.

SeqInt Amino acid sequence represented with numbers.

Mapping Amino Acid Letters to Integers

Amino Acid Code Amino Acid Code

Alanine A1 Phenylalanine F14

Arginine R2 Proline P15

Asparagine N3 Serine S–16

Aspartic acid
(Aspartate)

D4 Threonine T–17

Cysteine C5 Tryptophan W18

Glutamine Q6 Tyrosine Y19

Glutamic acid
(Glutamate)

E7 Valine V20

Glycine G8 Aspartic acid or
Asparagine

B21

Histidine H9 Glutamic acid
or glutamine

Z22

Isoleucine I10 Unknown or
any amino acid

X23

2-2

aa2int

Amino Acid Code Amino Acid Code

Leucine L11 Translation
stop

*24

Lysine K12 Gap of
indeterminate
length

- 25

Methionine M13 Any character
or symbol not
in table

?0

Description SeqInt = aa2int(SeqChar)converts a character string of amino acids
(SeqChar) to a 1-by-N array of integers (SeqInt) using the table Mapping
Amino Acid Letter to Integers.

Examples Converting a simple sequence

Convert a sequence of letters to integers.

1 Enter the character string MATLAB.

SeqInt = aa2int('MATLAB')

SeqInt =
13 1 17 11 1 21

Converting a random sequence

Convert a random amino acid sequence of letters to integers.

1 Create a random character string with amino acid characters.

SeqChar = randseq(20, 'alphabet', 'amino')

SeqChar =
dwcztecakfuecvifchds

2-3

aa2int

2 Convert the character representation to integers.

SeqInt = aa2int(SeqChar)

SeqInt =
Columns 1 through 13

4 18 5 22 17 7 5 1 12 14 0 7 5
Columns 14 through 20

20 10 14 5 9 4 16

See Also Bioinformatics Toolbox functions aminolookup, int2aa, int2nt, nt2int

2-4

aa2nt

Purpose Convert amino acid sequence to nucleotide sequence

Syntax SeqNT = aa2nt(SeqAA)
aa2nt(..., 'PropertyName', PropertyValue,...)
aa2nt(..., 'GeneticCode', GeneticCodeValue)
aa2nt(..., 'Alphabet' AlphabetValue)

Arguments
SeqAA Amino acid sequence. Enter a character

string or a vector of integers from the table .
Examples: 'ARN' or [1 2 3]

GeneticCodeValue Property to select a genetic code. Enter a code
number or code name from the table Genetic
Code below. If you use a code name, you can
truncate the name to the first two characters
of the name.

AlphabetValue Property to select a nucleotide alphabet. Enter
either 'DNA' or 'RNA'. The default value is
'DNA', which uses the symbols A, C, T, G. The
value 'RNA' uses the symbols A, C, U, G.

Genetic Code

Code Number Code Name Code Number Code Name

1 Standard 12 Alternative
Yeast Nuclear

2 Vertebrate
Mitochondrial

13 Ascidian
Mitochondrial

3 Yeast
Mitochondrial

14 Flatworm
Mitochondrial

2-5

aa2nt

Code Number Code Name Code Number Code Name

4 Mold,
Protozoan,
Coelenterate
Mitochondrial,
and
Mycoplasma
/Spiroplasma

15 Blepharisma
Nuclear

5 Invertebrate
Mitochondrial

16 Chlorophycean
Mitochondrial

6 Ciliate,
Dasycladacean,
and Hexamita
Nuclear

21 Trematode
Mitochondrial

9 Echinoderm
Mitochondrial

22 Scenedesmus
Obliquus
Mitochondrial

10 Euplotid
Nuclear

23 Thraustochytrium
Mitochondrial

11 Bacterial and
Plant Plastid

Description SeqNT = aa2nt(SeqAA) converts an amino acid sequence (SeqAA) to
a nucleotide sequence (SeqNT) using the standard genetic code. In
general, the mapping from an amino acid to a nucleotide codon is not
a one-to-one mapping. For amino acids with more then one possible
nucleotide codon, this function selects randomly a codon corresponding
to that particular amino acid.

For the ambiguous characters B and Z, one of the amino acids
corresponding to the letter is selected randomly, and then a codon
sequence is selected randomly. For the ambiguous character X, a codon
sequence is selected randomly from all possibilities.

2-6

aa2nt

aa2nt(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

aa2nt(..., 'GeneticCode', GeneticCodeValue) selects a genetic code
(GeneticCodeValue) to use when converting an amino acid sequence
(SeqAA) to a nucleotide sequence (SeqNT).

aa2nt(..., 'Alphabet' AlphabetValue) selects a nucleotide alphabet
(AlphabetValue).

Standard Genetic Code

Amino Acid Amino Acid

Alanine (A) GCT, GCC, GCA,
GCG

Phenylalanine
(F)

TTT, TTC

Arginine (R) CGT, CGC, CGA,
CGG, AGA, AGG

Proline (P) CCT, CCC,
CCA, CCG

Asparagine
(N)

ATT, AAC Serine (S) TCT, TCC,
TCA,TCG, AGT,
AGC

Aspartic
acid
(Aspartate,
D)

GAT, GAC Threonine (T) ACT, ACC,
ACA, ACG

Cysteine (C) TGT, TGC Tryptophan
(W)

TGG

Glutamine
(Q)

CAA, CAG Tyrosine (Y) TAT, TAC

Glutamic
acid
(Glutamate,
E)

GAA, GAG Valine (V) GTT, GTC,
GTA, GTG

2-7

aa2nt

Amino Acid Amino Acid

Glycine (G) GGT, GGC, GGA,
GGG

Aspartic acid
or Asparagine

B—random
codon from D
and N

Histidine
(H)

CAT, CAC Glutamic acid
or Glutamine

Z—random
codon from E
and Q

Isoleucine
(I)

ATT, ATC, ATA Unknown or
any amino acid

Xrandom codon

Leucine (L) TTA, TTG, CTT,
CTC, CTA, CTG

Translation
stop (*)

TAA, TAG, TGA

Lysine (K) AAA, AAG Gap of
indeterminate
length (-)

Methionine
(M)

ATG Any character
or any symbol
not in table (?)

???

Examples 1 Convert a amino acid sequence to a nucleotide sequence using the
standard genetic code.

aa2nt('MATLAB')

Warning: The sequence contains ambiguous characters.
ans =
ATGGCAACCCTGGCGAAT

2 Use the Vertebrate Mitochondrial genetic code.

aa2nt('MATLAP', 'GeneticCode', 2)

ans =
ATGGCAACTCTAGCGCCT

2-8

aa2nt

3 Use the genetic code for the Echinoderm Mitochondrial RNA
alphabet.

aa2nt('MATLAB','GeneticCode','ec','Alphabet','RNA')

Warning: The sequence contains ambiguous characters.
ans =
AUGGCUACAUUGGCUGAU

4 Convert a sequence with the ambiguous amino acid characters B.

aa2nt('abcd')

Warning: The sequence contains ambiguous characters.
ans =
GCCACATGCGAC

See Also Bioinformatics Toolbox functions geneticcode, nt2aa, revgeneticcode,
seqtool

MATLAB function rand

2-9

aacount

Purpose Count amino acids in sequence

Syntax Amino = aacount(SeqAA)
aacount(..., 'PropertyName', PropertyValue,...)
aacount(..., 'Chart', ChartValue)
aacount(..., 'Others', OthersValue)
aacount(..., 'Structure', StructureValue)

Arguments
SeqAA Amino acid sequence. Enter a character string

or vector of integers from the table . Examples:
'ARN' or [1 2 3]. You can also enter a structure
with the field Sequence.

ChartValue Property to select a type of plot. Enter either
'pie' or 'bar'.

OthersValue Property to control the counting of ambiguous
characters individually. Enter either 'full' or
'bundle'(default).

StructureValue Property to control blocking the unknown
characters warning and to not count unknown
characters.

Description Amino = aacount(SeqAA) counts the type and number of amino acids
in an amino acid sequence (SeqAA) and returns the counts in a 1-by-1
structure (Amino) with fields for the standard 20 amino acids (A R N D
C Q E G H I L K M F P S T W Y V).

• If a sequence contains amino acids with ambiguous characters (B, Z,
X), the stop character (*), or gaps indicated with a hyphen (-), the field
Others is added to the structure and a warning message is displayed.

Warning: Symbols other than the standard 20 amino acids
appear in the sequence

2-10

aacount

• If a sequence contains any characters other than the 20 standard
amino acids, ambiguous characters, stop, and gap characters, the
characters are counted in the field Others and a warning message is
displayed.

Warning: Sequence contains unknown characters. These will
be ignored.

• If the property Others = 'full' , this function lists the ambiguous
characters separately, asterisks are counted in a new field (Stop),
and hyphens are counted in a new field, (Gap).

aacount(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

aacount(..., 'Chart', ChartValue) creates a chart showing the
relative proportions of the amino acids.

aacount(..., 'Others', OthersValue), when OthersValue is
'full'', counts the ambiguous amino acid characters individually
instead of adding them together in the field Others.

aacount(..., 'Structure', StructureValue) when StructureValue
is 'full', blocks the unknown characters warning and ignores counting
unknown characters.

• aacount(SeqAA) — Display 20 amino acids, and only if there are
ambiguous and unknown characters, add an Others field with the
counts.

• aacount(SeqAA, 'Others', 'full') — Display 20 amino acids, 3
ambiguous amino acids, stops, gaps, and only if there are unknown
characters, add an Others field with the unknown counts.

• aacount(SeqAA, 'Structure', 'full') — Display 20 amino acids
and always display an Others field. If there are ambiguous and
unknown characters, adds counts to the Others field otherwise
display 0.

2-11

aacount

• aacount(SeqAA, 'Others', 'full', 'Structure', 'full') —
Display 20 amino acids, 3 ambiguous amino acids, stops, gaps, and
Others field. If there are unknown characters, add counts to the
Others field otherwise display 0.

Examples 1 Create a sequence.

Seq = aacount('MATLAB')

2 Count the amino acids in the sequence.

AA = aacount(Seq)

Warning: Symbols other than the standard 20 amino acids appear
in the sequence.
AA =

A: 2
R: 0
N: 0
D: 0
C: 0
Q: 0
E: 0
G: 0
H: 0
I: 0
L: 1
K: 0
M: 1
F: 0
P: 0
S: 0
T: 1
W: 0
Y: 0
V: 0

Others: 1

2-12

aacount

3 Get the count for alanine (A) residues.

AA.A
ans =

2

See Also Bioinformatics Toolbox functions aminolookup, atomiccomp, basecount,
codoncount, dimercount, isoelectric, molweight, proteinplot,
seqtool

2-13

affyinvarsetnorm

Purpose Perform rank invariant set normalization on probe intensities from
multiple Affymetrix CEL or DAT files

Syntax NormData = affyinvarsetnorm(Data)
[NormData, MedStructure] = affyinvarsetnorm(Data)
... affyinvarsetnorm(..., 'Baseline', BaselineValue, ...)
... affyinvarsetnorm(..., 'Thresholds', ThresholdsValue, ...)
... affyinvarsetnorm(..., 'StopPrctile',
StopPrctileValue, ...)
... affyinvarsetnorm(..., 'RayPrctile', RayPrctileValue, ...)
... affyinvarsetnorm(..., 'Method', MethodValue, ...)
... affyinvarsetnorm(..., 'Showplot', ShowplotValue, ...)

Arguments
Data Matrix of intensity values where each row

corresponds to a perfect match (PM) probe and
each column corresponds to an Affymetrix CEL
or DAT file. (Each CEL or DAT file is generated
from a separate chip. All chips should be of the
same type.)

MedStructure Structure of each column’s intensity median
before and after normalization, and the index
of the column chosen as the baseline.

BaselineValue Property to control the selection of the column
index N from Data to be used as the baseline
column. Default is the column index whose
median intensity is the median of all the
columns

2-14

affyinvarsetnorm

ThresholdsValue Property to set the thresholds for the lowest
average rank and the highest average rank,
which are used to determine the invariant set.
The rank invariant set is a set of data points
whose proportional rank difference is smaller
than a given threshold. The threshold for
each data point is determined by interpolating
between the threshold for the lowest average
rank and the threshold for the highest average
rank. Select these two thresholds empirically
to limit the spread of the invariant set, but
allow enough data points to determine the
normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT,
HT] where LT is the threshold for the lowest
average rank and HT is threshold for the
highest average rank. Values must be between
0 and 1. Default is [0.05, 0.005].

StopPrctileValue Property to stop the iteration process when
the number of data points in the invariant set
reaches N percent of the total number of data
points. Default is 1.

Note If you do not use this property, the
iteration process continues until no more data
points are eliminated.

RayPrctileValue Property to select the N percentage of the
highest ranked invariant set of data points to
fit a straight line through, while the remaining
data points are fitted to a running median
curve. The final running median curve is a
piece-wise linear curve. Default is 1.5.

2-15

affyinvarsetnorm

MethodValue Property to select the smoothing method used
to normalize the data. Enter 'lowess' or
'runmedian'. Default is 'lowess'.

ShowplotValue Property to control the plotting of two pairs of
scatter plots (before and after normalization).
The first pair plots baseline data versus data
from a specified column (chip) from the matrix
Data. The second is a pair of M-A scatter plots,
which plots M (ratio between baseline and
sample) versus A (the average of the baseline
and sample). Enter either 'all' (plot a pair of
scatter plots for each column or chip) or specify
a subset of columns (chips) by entering the
column number(s) or a range of numbers.

For example:

• ..., 'Showplot', 3, ...) plots data
from column 3.

• ..., 'Showplot', [3,5,7], ...) plots
data from columns 3, 5, and 7.

• ... , 'Showplot', 3:9, ...) plots
data from columns 3 to 9.

Description NormData = affyinvarsetnorm(Data) normalizes the values in each
column (chip) of probe intensities in Data to a baseline reference, using
the invariant set method. NormData is a matrix of normalized probe
intensities from Data.

Specifically, affyinvarsetnorm:

• Selects a baseline index, typically the column whose median intensity
is the median of all the columns.

2-16

affyinvarsetnorm

• For each column, determines the proportional rank difference (prd)
for each pair of ranks, RankX and RankY, from the sample column
and the baseline reference.

prd = abs(RankX - RankY)

• For each column, determines the invariant set of data points by
selecting data points whose proportional rank differences (prd) are
below threshold, which is a predetermined threshold for a given
data point (defined by the ThresholdsValue property). It repeats
the process until either no more data points are eliminated, or a
predetermined percentage of data points is reached.

The invariant set is data points with a prd < threshold.

• For each column, uses the invariant set of data points to calculate
the lowess or running median smoothing curve, which is used to
normalize the data in that column.

[NormData, MedStructure] = affyinvarsetnorm(Data) also returns a
structure of the index of the column chosen as the baseline and each
column’s intensity median before and after normalization.

Note If Data contains NaN values, then NormData will also contain
NaN values at the corresponding positions.

... affyinvarsetnorm(..., 'PropertyName', PropertyValue, ...)
defines optional properties that use property name/value pairs in any
order. These property name/value pairs are as follows:

... affyinvarsetnorm(..., 'Baseline', BaselineValue, ...) lets
you select the column index N from Data to be the baseline column.
Default is the index of the column whose median intensity is the median
of all the columns.

2-17

affyinvarsetnorm

... affyinvarsetnorm(..., 'Thresholds', ThresholdsValue, ...)
sets the thresholds for the lowest average rank and the highest average
rank, which are used to determine the invariant set. The rank invariant
set is a set of data points whose proportional rank difference is smaller
than a given threshold. The threshold for each data point is determined
by interpolating between the threshold for the lowest average rank and
the threshold for the highest average rank. Select these two thresholds
empirically to limit the spread of the invariant set, but allow enough
data points to determine the normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT, HT] where LT is the threshold
for the lowest average rank and HT is threshold for the highest average
rank. Values must be between 0 and 1. Default is [0.05, 0.005].

... affyinvarsetnorm(..., 'StopPrctile',
StopPrctileValue, ...) stops the iteration process when the number
of data points in the invariant set reaches N percent of the total number
of data points. Default is 1.

Note If you do not use this property, the iteration process continues
until no more data points are eliminated.

... affyinvarsetnorm(..., 'RayPrctile', RayPrctileValue, ...)
selects the N percentage of the highest ranked invariant set of data
points to fit a straight line through, while the remaining data points are
fitted to a running median curve. The final running median curve is a
piece-wise linear curve. Default is 1.5.

... affyinvarsetnorm(..., 'Method', MethodValue, ...) selects
the smoothing method for normalizing the data. When MethodValue
is 'lowess', affyinvarsetnorm uses the lowess method. When
MethodValue is 'runmedian', affyinvarsetnorm uses the running
median method. Default is 'lowess'.

... affyinvarsetnorm(..., 'Showplot', ShowplotValue, ...)
plots two pairs of scatter plots (before and after normalization). The
first pair plots baseline data versus data from a specified column

2-18

affyinvarsetnorm

(chip) from the matrix Data. The second is a pair of M-A scatter
plots, which plots M (ratio between baseline and sample) versus A
(the average of the baseline and sample). When ShowplotValue is
'all', affyinvarsetnorm plots a pair of scatter plots for each column
or chip. When ShowplotValue is a number(s) or range of numbers,
affyinvarsetnorm plots a pair of scatter plots for the indicated column
numbers (chips).

For example:

• ..., 'Showplot', 3) plots the data from column 3 of Data.

• ..., 'Showplot', [3,5,7]) plots the data from columns 3, 5,
and 7 of Data.

• ..., 'Showplot', 3:9) plots the data from columns 3 to 9 of Data.

2-19

affyinvarsetnorm

Examples 1 Load a MAT file, included with the Bioinformatics Toolbox, which
contains Affymetrix data variables, including pmMatrix, a matrix of
PM probe intensity values from multiple CEL files.

load prostatecancerpmdata

2 Normalize the data in pmMatrix, using the affyinvarsetnorm
function.

2-20

affyinvarsetnorm

NormMatrix = affyinvarsetnorm(pmMatrix);

The prostatecancerpmdata.mat file used in the previous example
contains data from Best et al., 2005.

References [1] Li, C., and Wong, W.H. (2001). Model-based analysis of
oligonucleotide arrays: model validation, design issues and standard
error application. Genome Biology 2(8): research0032.1-0032.11.

[2] http://biosun1.harvard.edu/complab/dchip/normalizing20arrays.htm#isn

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823-6834.

See Also affyread, celintensityread, mainvarsetnorm, malowess, manorm,
quantilenorm, rmabackadj, rmasummary

2-21

http://biosun1.harvard.edu/complab/dchip/normalizing20arrays.htm#isn

affyread

Purpose Read microarray data from Affymetrix GeneChip file (Windows 32)

Syntax AFFYData = affyread(File)
AFFYData = affyread(File, LibraryDir)

Arguments
File Enter a filename, or a path and filename

supported by your computer. Supported file
formats are DAT, EXP, CEL, CHP and, CDF. If the
file cannot be located on the Web, it needs to be
stored locally.

LibraryDir Enter the path and directory where the library
file (CDF) is stored.

Description
Note This function is supported on the Windows 32 platform only.

The function affyread can read four types of Affymetrix data files.
These are

• DAT files which contain raw image data

• CEL files that contain information about the expression levels of the
individual probes

• CHP files that contain information about probe sets,

• EXP files which contain information about experimental conditions
and protocols

affyread can also read CDF and GIN library files. The CDF file contains
information about which probes belong to which probe set and the GIN
file contains information about the probe sets such as the gene name
with which the probe set is associated. To learn more about the actual
files, you can download sample data files from:

2-22

affyread

http://www.affymetrix.com/support/technical/sample_data/demo_data.af

AFFYData = affyread(File) reads an Affymetrix data file (File) and
creates a MATLAB structure (AFFYDdata).

AFFYData = affyread(File, LibraryDir) specifies the directory where
the library files (CDF) are stored.

GeneChip and Affymetrix are registered trademarks of Affymetrix, Inc.

When reading a CHP file, the Affymetrix GDAC Runtime Libraries
look for the associated CEL file in the directory that it was in when the
CHP file was created. If the CEL file is not found, then affyread does
not read probe set values.

If you encounter errors reading files, then check that the Affymetrix
GDAC Runtime Libraries are correctly installed. You can reinstall the
libraries by running the installer from the Windows Explorer:

$MATLAB$\toolbox\bioinfo\microarray\lib\...
GdacFilesRuntimeInstall-v4.exe

Example 1 Read a CEL file.

celStruct = affyread('Drosophila.CEL')

2 Display a spatial plot of probe intensities

maimage(celStruct, 'Intensity')

3 Read in a DAT file and display the raw image data

datStruct = affyread(Drosophila.data')
imagesc(datStruct.Image);
axis image;

4 Read a CHP file and plot the probe values for a probe set. The CHP
files require the library files. Your file may be in a different location
than this example.

2-23

affyread

chpStruct = affyread('Drosophila.chp',...
'D:\Affymetrix\LibFiles\DrosGenome1')
geneName = probesetlookup(chpStruct,'14317_at')
probesetplot(chpStruct,'142417_at');

Sample data files are available from

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

See Also Bioinformatics Toolbox functions agferead, celintensityread,
gprread, probelibraryinfo, probesetlink, probesetlookup,
probesetplot, probesetvalues, sptread

2-24

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

agferead

Purpose Read Agilent Feature Extraction Software file

Syntax AGFEData = agferead(File)

Arguments
File Microarray data file generated with Agilent’s Feature

Extraction Software.
Description AGFEData = agferead(File) reads files generated with Feature

Extraction Software from Agilent micoararry scanners and creates a
structure (AGFEData) containing the following fields:

Field

Header

Stats

Columns

Rows

Names

IDs

Data

ColumnNames

TextData

TextColumnNames

Feature Extraction Software takes an image from a Agilent microarray
scanner and generates raw intensity data for each spot on the plate.
For more information about this software, see a description on their
Web site at

http://www.chem.agilent.com/scripts/pds.asp?lpage=2547

Example 1 Read in a sample Agilent Feature Extraction Software file. Note, the
file fe_sample.txt is not provided with the Bioinformatics Toolbox.

2-25

http://www.chem.agilent.com/scripts/pds.asp?lpage=2547

agferead

agfeStruct = agferead('fe_sample.txt')

2 Plot the median foreground.

maimage(agfeStruct,'gMedianSignal');
maboxplot(agfeStruct,'gMedianSignal');

See Also Bioinformatics Toolbox functions affyread, celintensityread,
galread, geosoftread , gprread, imageneread, magetfield, sptread

2-26

aminolookup

Purpose Amino acid codes, abbreviations, names, and codons

Syntax aminolookup(SeqAA)
aminolookup('Code', ’CodeValue')
aminolookup('Integer', IntegerValue)
aminolookup('Abbreviation', AbbreviationValue)
aminolookup('Name', NameValue)

Arguments
SeqAA Amino acid sequence. Enter a character

string of single-letter codes or three-letter
abbreviations from the Amino Acid Lookup
Table below.

CodeValue Amino acid single-letter code. Enter a single
character from the Amino Acid Lookup Table
below.

IntegerValue

AbbreviationValue Amino acid three-letter abbreviation. Enter
a three-letter abbreviation from the Amino
Acid Lookup Table below.

NameValue Amino acid name. Enter an amino acid name
from the Amino Acid Lookup Table below.

Amino Acid Lookup Table

Code Integer Abbreviation Name Codons

A 1 Ala Alanine GCU GCC GCA
GCG

R 2 Arg Arginine CGU CGC CGA
CGG AGA AGG

N 3 Asn Asparagine AAU AAC

2-27

aminolookup

Code Integer Abbreviation Name Codons

D 4 Asp Aspartic acid
(Aspartate)

GAU GAC

C 5 Cys Cysteine UGU UGC

Q 6 Gln Glutamine CAA CAG

E 7 Glu Glutamic acid
(Glutamate)

GAA GAG

G 8 Gly Glycine GGU GGC GGA
GGG

H 9 His Histidine CAU CAC

I 10 Ile Isoleucine AUU AUC AUA

L 11 Leu Leucine UUA UUG CUU
CUC CUA CUG

K 12 Lys Lysine AAA AAG

M 13 Met Methionine AUG

F 14 Phe Phenylalanine UUU UUC

P 15 Pro Proline CCU CCC CCA
CCG

S 16 Ser Serine UCU UCC UCA
UCG AGU AGC

T 17 Thr Threonine ACU ACC ACA
ACG

W 18 Trp Tryptophan UGG

Y 19 Tyr Tyrosine UAU UAC

V 20 Val Valine GUU GUC GUA
GUG

2-28

aminolookup

Code Integer Abbreviation Name Codons

B 21 Asx Aspartic acid or
Asparagine

AAU AAC GAU
GAC

Z 22 Glx Glutamic acid
or Glutamine

CAA CAG GAA
GAG

X 23 Xaa Any amino acid All codons

* 24 END Termination
(translation
stop)

UAA UAG UGA

- 25 GAP Gap of unknown
length

- - -

? 0 ??? Unknown
amino acid

Description aminolookup displays a table of amino acid codes, integers,
abbreviations, names, and codons.

aminolookup(SeqAA) converts between amino acid three-letter
abbreviations and one-letter codes. If the input is a character string of
three-letter abbreviations, then the output is a character string with
the corresponding one-letter codes. If the input is a character string of
single-letter codes, then the output is a character string of three-letter
codes.

If you enter one of the ambiguous characters B, Z, X, this function
displays the abbreviation for the ambiguous amino acid character.

aminolookup('abc')

ans=
AlaAsxCys

aminolookup('Code', ’CodeValue') displays the corresponding amino
acid three-letter abbreviation and name.

2-29

aminolookup

aminolookup('Integer', IntegerValue) displays the corresponding
amino acid single-letter code and name.

aminolookup('Abbreviation', AbbreviationValue) displays the
corresponding amino acid single-letter code and name.

aminolookup('Name', NameValue) displays the corresponding
single-letter amino acid code and three-letter abbreviation.

Examples 1 Display the single-letter code and three-letter abbreviation for
proline.

aminolookup('Name','proline')

ans =
P Pro

2 Convert a single-letter amino acid sequence to a three-letter
sequence.

aminolookup('MWKQAEDIRDIYDF')

ans =
MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe

3 Convert a three-letter amino acid sequence to a single-letter
sequence.

aminolookup('MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe')

ans =
MWKQAEDIRDIYDF

4 Display the single-letter code, three-letter abbreviation, and name
for an integer.

aminolookup('integer', 1)

2-30

aminolookup

ans =
A Ala Alanine

See Also Bioinformatics Toolbox functions aa2int, aacount, geneticcode,
int2aa, nt2aa, revgeneticcode

2-31

atomiccomp

Purpose Calculate atomic composition of protein

Syntax NumberAtoms = atomiccomp(SeqAA)

Arguments
SeqAA Amino acid sequence. Enter a character string or vector

of integers from the table Mapping Amino Acid Letters to
Integers on page 2-2. You can also enter a structure with
the field Sequence.

Description NumberAtoms = atomiccomp(SeqAA) counts the type and number of
atoms in an amino acid sequence (SeqAA) and returns the counts in a
1-by-1 structure (NumberAtoms) with fields C, H, N, O, and S.

Examples 1 Get an amino acid sequence from the NCBI Genpept Database

rhodopsin = getgenpept('NP_000530');

2 Count the atoms in a sequence.

rhodopsinAC = atomiccomp(rhodopsin)

rhodopsinAC =

C: 1814
H: 2725
N: 423
O: 477
S: 25

3 Retrieve the number of carbon atoms in the sequence.

rhodopsinAC.C

ans =

1814

2-32

atomiccomp

See Also Bioinformatics Toolbox functions aacount, molweight, proteinplot

2-33

basecount

Purpose Count nucleotides in sequence

Syntax NumberBases = basecount(SeqNT)
basecount(..., 'PropertyName', PropertyValue,...)
basecount(..., 'Chart', ChartValue)
basecount(..., 'Others', OthersValue)
basecount(..., 'Structure', StructureValue)

Arguments
SeqNT Nucleotide sequence. Enter a character string

with the letters A, T, U, C, and G. The count for
U characters is included with the count for T
characters. . You can also enter a structure with
the field Sequence.

ChartValue Property to select a type of plot. Enter either 'pie'
or 'bar'.

OthersValue Property to control counting ambiguous characters
individually. Enter either full' or 'bundle'
(default).

Description NumberBases = basecount(SeqNT) counts the number of bases in a
nucleotide sequence (SeqNT) and returns the base counts in a 1-by-1
structure (Bases) with the fields A, C, G, T.

• For sequences with the character U, the number of U characters is
added to the number of T characters.

• If the sequence contains ambiguous nucleotide characters (R, Y, K, M,
S, W, B, D, H, V, N), or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol list' appear
in the sequence.
These will be in Others.

2-34

basecount

• If the sequence contains undefined nucleotide characters (E F H I J
L O P Q X Z) , the characters are counted in the field Others and a
warning message is displayed.

Warning: Unknown symbols 'symbol list' appear
in the sequence.
These will be ignored.

• If Others = 'full'', ambiguous characters are listed separately
and hyphens are counted in a new field (Gaps).

basecount(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

basecount(..., 'Chart', ChartValue) creates a chart showing the
relative proportions of the nucleotides.

basecount(..., 'Others', OthersValue), when OthersValue is
'full', counts all the ambiguous nucleotide symbols individually
instead of bundling them together into the Others field of the output
structure.

basecount(..., 'Structure', StructureValue) when
StructureValue is 'full' , blocks the unknown characters warning
and ignores counting unknown characters.

• basecount(SeqNT) — Display 4 nucleotides, and only if there are
ambiguous and unknown characters, add an Others field with the
counts.

• basecount(SeqNT, 'Others', 'full') — Display 4 nucleotides,
11 ambiguous nucleotides, gaps, and only if there are unknown
characters, add an Others field with the unknown counts.

• basecount(SeqNT, 'Structure', 'full') — Display 4 nucleotides
and always display an Others field. If there are ambiguous and
unknown characters, adds counts to the Others field otherwise
display 0.

2-35

basecount

• basecount(SeqNT, 'Others', 'full', 'Structure', 'full')
— Display 4 nucleotides, 11 ambiguous nucleotides, gaps, and Others
field. If there are unknown characters, add counts to the Others
field otherwise display 0.

Examples 1 Count the number of bases in a DNA sequence.

Bases = basecount('TAGCTGGCCAAGCGAGCTTG')

Bases =
A: 4
C: 5
G: 7
T: 4

2 Get the count for adenosine (A) bases.

Bases.A

ans =
4

3 Count the bases in a DNA sequence with ambiguous characters.

basecount('ABCDGGCCAAGCGAGCTTG','Others','full')

ans =
A: 4
C: 5
G: 6
T: 2
R: 0
Y: 0
K: 0
M: 0
S: 0
W: 0
B: 1

2-36

basecount

D: 1
H: 0
V: 0
N: 0

Gaps: 0

See Also Bioinformatics Toolbox functions aacount, baselookup, codoncount,
cpgisland, dimercount, nmercount, ntdensity, seqtool

2-37

baselookup

Purpose Nucleotide codes, abbreviations, and names

Syntax baselookup('Complement', SeqNT)
baselookup('Code', CodeValue)
baselookup('Integer', IntegerValue)
baselookup('Name', NameValue)

Arguments
SeqNT Nucleotide sequence. Enter a character string of

single-letter codes from the Nucleotide Lookup
Table below.

In addition to a single nucleotide sequence,
SeqNT can be a cell array of sequences,
or a two-dimensional character array of
sequences. The complement for each sequence
is determined independently

CodeValue Nucleotide letter code. Enter a single character
from the Nucleotide Lookup Table below. Code
can also be a cell array or a two-dimensional
character array.

IntegerValue Nucleotide integer. Enter an integer from the
Nucleotide Lookup Table below. Integers are
arbitrarily assigned to IUB/IUPAC letters.

NameValue Nucleotide name. Enter a nucleotide name from
the Nucleotide Lookup Table below. NameValue
can also be a single name, a cell array, or a
two-dimensional character array.

Nucleotide Lookup Table

Code Integer Base Name Meaning Complement

A 1 Adenine A T

C 2 Cytosine C G

2-38

baselookup

Code Integer Base Name Meaning Complement

G 3 Guanine G C

T 4 Thymine T A

U 4 Uracil U A

R 5 (PuRine) G|A Y

Y 6 (PYrimidine) T|C R

K 7 (Keto) G|T M

M 8 (AMino) A|C K

S 9 Strong interaction (3
H bonds)

G|C S

W 10 Weak interaction (2 H
bonds)

A|T W

B 11 Not-A (B follows A) G|T|C V

D 12 Not-C (D follows C) G|A|T H

H 13 Not-G (H follows G) A|T|C D

V 14 Not-T (or U) (V follows
U)

G|A|C B

N,X 15 ANy nucleotide G|A|T|C N

- 16 Gap of indeterminate
length

Gap -

Description baselookup('Complement', SeqNT) displays the complementary
nucleotide sequence.

baselookup('Code', CodeValue) displays the corresponding letter
code, meaning, and name. For ambiguous nucleotide letters (R Y K M S
W B D H V N X), the name is replace by a descriptive name.

baselookup('Integer', IntegerValue) displays the corresponding
letter code, meaning, and nucleotide name.

2-39

baselookup

baselookup('Name', NameValue) displays the corresponding letter
code and meaning.

Examples baselookup('Complement', 'TAGCTGRCCAAGGCCAAGCGAGCTTN')

baselookup('Name','cytosine')

See Also Bioinformatics Toolbox functions basecount, codoncount, dimercount,
geneticcode, nt2aa, nt2int, revgeneticcode, seqtool

2-40

biograph

Purpose Create biograph object

Syntax BGobj = biograph(CMatrix)
BGobj = biograph(CMatrix, NodeIDs)

Arguments
CMatrix Connection matrix. Enter a square matrix that is

full or sparse. For a square matrix the number of
rows is equal to the number of nodes. A value of 1
indicates a connection to a node while a 0 indicates
no connection.

NodeIds Node identification strings. Enter a cell array of
strings with the same number of strings as the
number of rows/columns in the connection matrix
(CMatrix). Default values are the row/column
numbers.

Description BGobj = biograph(CMatrix) creates a graph object (BGobj) using a
connection matrix (CMatrix). All nondiagonal and positive entries
in the connection matrix (CMatrix) indicate connected nodes, rows
represent the source nodes, and columns represent the sink nodes.

A biograph object (BGobj) has two properties (Nodes, Edges) that have
their own properties. For a list of the Nodes and Edges properties, see
the tables below.

BGobj = biograph(CMatrix, NodeIDs) specifies the node identification
strings (NodeIDs).

Access properties of a biograph object with BGobj.propertyname,
BGobj.propertyname.propertyname, or with the get and set commands.

Method
Summary

biograph Create biograph object

dolayout (biograph) Calculate node positions and edge
trajectories

2-41

biograph

getancestors (biograph) Find ancestors in biograph object

getdescendants (biograph) Find descendants in biograph
object

getedgesbynodeid (biograph) Handles to edges in biograph
object

getnodesbyid (biograph) Handles to nodes

getrelatives (biograph) Find relatives in biograph object

view (biograph) Draw figure from biograph object

Property
Summary

Properties for a biograph Object

Property Description

ID Enter a character string.

Label Enter a character string.

Description Description of the graph. Enter
text.

LayoutType Algorithm for the layout engine.
Enter 'hierarchical'(default),
'equilibrium', 'radial'.

EdgeType Enter 'straight',
'curved'(default), 'segmented'.
Curved or segmented edges
occur only when necessary to
avoid obstruction by nodes.
Graphs with LayoutType equal
to 'equilibrium' or 'Radial’
cannot produce curved or
segmented edges.

2-42

biograph

Property Description

Scale Property to post-scale the node
coordinates. Enter a positive
number.

LayoutScale Property to scale the size of the
nodes before calling the layout
engine. Enter a positive number.

ShowArrows Property to control showing
arrows with the edges. Enter
either 'on' (default) or 'off’.

NodeAutoSize Property to control precalculating
the node size before calling the
layout engine. Enter either 'on'
or 'off'.

NodeCallback User callback for all nodes.
Enter the name of a function or
a function handle. Default is
'display'.

EdgeCallback User callback for all edges. Enter
the name of a function or function
handle. Default is 'display'.

Nodes Column vector with handles
to nodes. Size of vector is
NumberOfNodes x 1. For
properties of the Nodes property,
see the table below.

Edges Column vector with handles
to edges. Size of vector
is NumberOfEdges x 1.
For properties of the Edges
property, see the table below.

2-43

biograph

Properties of the Nodes Property

Property Description

ID Character string defined when the
biograph object is created. Node IDs
must be unique. Read-only.

Label User defined label for a node on a graph.
Enter a character string. The default
value is the ID property.

Description Description of the node. Enter text.

Position Two element numeric vector of x and
y coordinates computed by the layout
engine. The default is []. For example,
[150 150].

Shape Enter 'box'(default), 'ellipse',
'circle', 'rect', 'rectangle',
'diamond', 'trapezium', 'house',
'invtrapezium', 'inverse',
'parallelogram'.

Size Two element numeric vector calculated
before calling the layout engine using the
actual font size and shape of the node.
The default value is [10 10].

Color RGB three element numeric vector.
Default is [1 1 0.7].

LineWidth Positive number. Default is 1.

LineColor RGB three element numeric vector.
Default is [0.3 0.3 1].

FontSize Positive number. Default is 8 pts.

TextColor RGB three element numeric vector.
Default is [0 0 0].

2-44

biograph

Properties of the Edge Property

Property Description

ID Character string defined when the
biograph object is created. Edge IDs
must be unique. Read-only.

Label Label for a node on a graph. Enter a
string.

Description Description for a node. Enter a text.

LineWidth Positive number. Default is 1.

LineColor RGB three element numeric vector.
Default is [0.5 0.5 0.5].

Example 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg1 = biograph(cm)
get(bg1.nodes,'ID')

ans =
'Node 1'
'Node 2'
'Node 3'
'Node 4'
'Node 5'

2 Create a biograph object and assign the node IDs.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
ids = {'M30931','L07625','K03454','M27323','M15390'};
bg2 = biograph(cm,ids);
get(bg2.nodes,'ID');

view(bg2);

2-45

biograph

In bg1.Node, the properties ID and Label are set to the same
value. However, you can only modify the Label field. Node.ID is used
internally to identify the nodes.

See Also Bioinformatics Toolbox

• function — biograph (object constructor)

• biograph object methods — dolayout, getancestors,
getdescendants, getedgesbynodeid, getnodesbyid, getrelatives,
view

MATLAB

2-46

biograph

• functions — get, set

2-47

blastncbi

Purpose Generate remote BLAST request

Syntax blastncbi(Seq, Program)
RID = blastncbi(Seq, Program)
[RID, RTOE] = blastncbi(Seq, Program)
blastncbi(..., 'PropertyName', PropertyValue,...)
blastncbi(..., 'Database', DatabaseValue)
blastncbi(..., 'Descriptions', DescriptionsValue)
blastncbi(..., 'Alignments', AlignmentsValue)
blastncbi(..., 'Filter', FilterValue)
blastncbi(..., 'Expect', ExpectValue)
blastncbi(..., 'Word', WordValue)
blastncbi(..., 'Matrix', MatrixValue)
blastncbi(..., 'GapOpen', GapOpenValue)
blastncbi(..., 'ExtendGap', ExtendGapValue)
blastncbi(..., 'Inclusion', InclusionValue)
blastncbi(..., 'Pct', PctValue)

Arguments
Seq Nucleotide or amino acid sequence. Enter a

GenBank or RefSeq accession number, GI,
FASTA file, URL, string, character array, or
a MATLAB structure that contains the field
Sequence. You can also enter a structure with
the field Sequence.

Program BLAST program. Enter 'blastn', 'blastp',
'pciblast', 'blastx', 'tblastn', 'tblastx',
or 'megablast'.

2-48

blastncbi

Database Property to select a database. Compatible
databases depend upon the type of sequence
submitted and program selected. The
nonredundant database, 'nr', is the default
value for both nucleotide and amino acid
sequences.

For nucleotide sequences, enter 'nr', 'est',
'est_human', 'est_mouse', 'est_others',
'gss', 'htgs', 'pat', 'pdb', 'month',
'alu_repeats', 'dbsts', 'chromosome',
'wgs', 'refseq_rna', 'refseq_genomic', or
'env_nt'. The default value is 'nr'.

For amino acid sequences, enter 'nr',
'swissprot', 'pat', 'pdb','month',
'refseq_protein', or 'env_nr', . The default
value is 'nr'.

Description Property to specify the number of short
descriptions. The default value is normally
100, and for Program = pciblast, the default
value is 500.

Alignment Property to specify the number of sequences to
report high-scoring segment pairs (HSP). The
default value is normally 100, and for Program
= pciblast, the default value is 500.

Filter Property to select a filter. Enter 'L'
(low-complexity), 'R' (human repeats), 'm'
(mask for lookup table), or 'lcase' (to turn on
the lowercase mask). The default value is 'L'.

Expect Property to select the statistical significance
threshold. Enter a real number. The default
value is 10.

Word Property to select a word length. For amino
acid sequences, Word can be 2 or 3 (3 is the
default value), and for nucleotide sequences,
Word can be 7, 11, or 15 (11 is the default
value). If Program = 'MegaBlast', Word can
be 11, 12, 16, 20, 24, 28, 32, 48, or 64, with a
default value of 28

2-49

blastncbi

Matrix Property to select a substitution matrix for
amino acid sequences. Enter 'PAM30’, 'PAM70',
'BLOSUM80', 'BLOSUM62', or 'BLOSUM45’. The
default value is 'BLOSUM62'.

Inclusion Property for PCI-BLAST searches to define the
statistical significance threshold. The default
value is 0.005.

Pct Property to select the percent identity. Enter
None, 99, 98, 95, 90, 85, 80, 75, or 60. Match and
mismatch scores are automatically selected.
The default value is 99 (99, 1, -3)

Description The Basic Local Alignment Search Tool (BLAST) offers a fast and
powerful comparative analysis of interesting protein and nucleotide
sequences against known structures in existing online databases.

blastncbi(Seq, Program) sends a BLAST request against a sequence
(Seq) to NCBI using a specified program (Program). With no output
arguments, blastncbi returns a command window link to the actual
NCBI report.

RID = blastncbi(Seq, Program) calls with one output argument and
returns the Report ID (RID).

[RID, RTOE] = blastncbi(Seq, Program) calls with two output
arguments and returns both the report ID (RID) and the Request Time
Of Execution (RTOE) which is an estimate of the time until completion.

blastncbi uses the NCBI default values for the optional arguments:
'nr' for the database, 'L' for the filter, and '10' for the expectation
threshold. The default values for the remaining optional arguments
depend on which program is used. For help in selecting an appropriate
BLAST program, visit

http://www.ncbi.nlm.nih.gov/BLAST/producttable.shtml

Information for all of the optional parameters can be found at

2-50

http://www.ncbi.nlm.nih.gov/BLAST/producttable.shtml

blastncbi

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastcgihelp_new.html

blastncbi(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

blastncbi(..., 'Database', DatabaseValue) selects a database for
the alignment search.

blastncbi(..., 'Descriptions', DescriptionsValue) , when the
function is called without output arguments, specifies the numbers of
short descriptions returned to the quantity specified.

blastncbi(..., 'Alignments', AlignmentsValue), when the function
is called without output arguments, specifies the number of sequences
for which high-scoring segment pairs (HSPs) are reported.

blastncbi(..., 'Filter', FilterValue) selects the filter to applied
to the query sequence.

blastncbi(..., 'Expect', ExpectValue) provides a statistical
significance threshold for matches against database sequences. You can
learn more about the statistics of local sequence comparison at

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html#head2

blastncbi(..., 'Word', WordValue) selects a word size for amino
acid sequences.

blastncbi(..., 'Matrix', MatrixValue) selects the substitution
matrix for amino acid sequences only. This matrix assigns the score for
a possible alignment of two amino acid residues.

blastncbi(..., 'GapOpen', GapOpenValue) selects a gap penalty for
amino acid sequences. Allowable values for a gap penalty vary with
the selected substitution matrix. For information about allowed gap
penalties for matrixes other then the BLOSUM62 matrix, see

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastcgihelp_new.html

blastncbi(..., 'ExtendGap', ExtendGapValue) defines the penalty
for extending a gap greater than one space.

2-51

http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastcgihelp_new.html%20
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html#head2
http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastcgihelp_new.html%20

blastncbi

blastncbi(..., 'Inclusion', InclusionValue) for PSI-BLAST only,
defines the statistical significance threshold (InclusionValue) for
including a sequence in the Position Specific Score Matrix (PSSm)
created by PSI-BLAST for the subsequent iteration. The default value
is 0.005.

blastncbi(..., 'Pct', PctValue), when ProgramValue is
'Megablast', selects the percent identity and the corresponding
match and mismatch score for matching existing sequences in a public
database.

2-52

blastncbi

V
a
lu

es
b
y

P
ro

g
ra

m

B
LA

ST
N

B
LA

ST
P

B
LA

ST
X

TB
LA

ST
N

TB
LA

ST
X

M
EG

A

D
at

ab
as

e
n
r
(d

ef
au

lt
),

e
s
t
,

e
s
t
_
h
u
m
a
n
,

e
s
t
_
m
o
u
s
e
,

e
s
t
_
o
t
h
e
r
s
,

g
s
s
,h

t
g
s
,p

a
t
,

p
d
b
,
m
o
n
t
h
,

a
l
u
_
r
e
p
e
a
t
s
,

d
b
s
t
s
,

c
h
r
o
m
o
s
o
m
e
,

w
g
s
,

r
e
f
s
e
q
_
r
n
a
,

r
e
f
s
e
q
_
g
e
n
o
m
i
c
,

e
n
v
_
n
t

n
r
(d

ef
au

lt
),

s
w
i
s
s
p
r
o
t
,

p
a
t
,
p
d
b
,

m
o
n
t
h
,

r
e
f
s
e
q
_
p
r
o
t
e
i
n
,

e
n
v
_
n
r

va
lu

es
sa

m
e

as
B

L
A

S
T

P
va

lu
es

sa
m

e
as

B
L

A
S

T
N

va
lu

es
sa

m
e

as
B

L
A

S
T

N
va

lu
es

sa
m

e
as

B
L

A
S

T
N

F
il

te
r

l
o
w
(d

ef
au

lt
),

h
u
m
a
n
,
t
a
b
l
e
,

l
o
w
e
r

l
o
w
(d

ef
au

lt
),

t
a
b
l
e
,l

o
w
e
r

l
o
w
(d

ef
au

lt
),

t
a
b
l
e
,l

o
w
e
r

l
o
w
(d

ef
au

lt
),

t
a
b
l
e
,l

o
w
e
r

l
o
w
(d

ef
au

lt
),

h
u
m
a
n
,t

a
b
l
e
,

l
o
w
e
r

l
o
w

E
xp

ec
t

1
0
(d

ef
au

lt
)

1
0
(d

ef
au

lt
)

10
(d

ef
au

lt
)

10
(d

ef
au

lt
)

10
(d

ef
au

lt
)

10

W
or

d
7 1
1

(d
ef

au
lt

)
1
5

2 3
(d

ef
au

lt
)

2 3
(d

ef
au

lt
)

2 3
(d

ef
au

lt
)

2 3
(d

ef
au

lt
)

1
1
,
1
2
,

1
6
,2

0
,2

4
,

2
8
(d

ef
),
3
2
,

4
8
,6

4

M
at

ri
x

x
P
A
M
3
0

P
A
M
7
0

B
L
O
S
U
M
4
5

B
L
O
S
U
M
8
0

B
L
O
S
U
M
6
2

(d
ef

au
lt

)

P
A
M
3
0

P
A
M
7
0

B
L
O
S
U
M
4
5

B
L
O
S
U
M
8
0

B
L
O
S
U
M
6
2

(d
ef

au
lt

)

P
A
M
3
0

P
A
M
7
0

B
L
O
S
U
M
4
5

B
L
O
S
U
M
8
0

B
L
O
S
U
M
6
2

(d
ef

au
lt

)

P
A
M
3
0

P
A
M
7
0

B
L
O
S
U
M
4
5

B
L
O
S
U
M
8
0

B
L
O
S
U
M
6
2

(d
ef

au
lt

)

x

2-53

blastncbi
B
LA

ST
N

B
LA

ST
P

B
LA

ST
X

TB
LA

ST
N

TB
LA

ST
X

M
EG

A

G
A

P
x

[
9

2
]
,
[
8

2
]
,
[
7

2
]
,

[
1
2

1
]
,
[
1
1

1
]
(d

ef
au

lt
),

[
1
0

1
]

[
9

2
]
,
[
8

2
]
,

[
7

2
]
,[

1
2

1
]
,

[
1
1

1
]
(d

ef
au

lt
),

[
1
0

1
]

[
9

2
]
,
[
8

2
],

[
7

2
]
,[

1
2

1
]
,

[
1
1

1
]
(d

ef
au

lt
),

[
1
0

1
]

[
9

2
]
,
[
8

2
]
,
[
7

2
]
,

[
1
2

1
]
,

[
1
1

1
]
(d

ef
au

lt
),

[
1
0

1
]

x

P
ct

x
x

x
x

x
7
9
,
8
0
,

8
8
.
9
5
,9

8
,

9
9
(d

ef
)

2-54

blastncbi

Examples % Get a sequence from the Protein Data Bank and create
% a MATLAB structure
S = getpdb('1CIV')

% Use the structure as input for a BLAST search with an
% expectation of 1e-10.
blastncbi(S,'blastp','expect',1e-10)

% Click the URL link (Link to NCBI BLAST Request) to go
% directly to the NCBI request.

% You can also try a search directly with an accession
% number and an alternative scoring matrix.
RID = blastncbi('AAA59174','blastp','matrix','PAM70,'...

'expect',1e-10)

% The results based on the RID are at
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi

% or pass the RID to BLASTREAD to parse the report and
% load it into a MATLAB structure.
blastread(RID)

See Also Bioinformatics Toolbox function blastread, getblast

2-55

blastread

Purpose Read data from NCBI BLAST report file

Syntax Data = blastread(File)

Arguments
File NCBI BLAST formatted report file. Enter a filename,

a path and filename, or a URL pointing to a file. File
can also be a MATLAB character array that contains
the text for a NCBI BLAST report.

Description BLAST (Basic Local Alignment Search Tool) reports offer a fast and
powerful comparative analysis of interesting protein and nucleotide
sequences against known structures in existing online databases.
BLAST reports can be lengthy, and parsing the data from the various
formats can be cumbersome.

Data = blastread(File) reads a BLAST report from an NCBI
formatted file (File) and returns a data structure (Data) containing
fields corresponding to the BLAST keywords. blastread parses the
basic BLAST reports BLASTN, BLASTP, BLASTX, TBLASTN, and TBLASTX.

Data contains the following fields:

Field

RID

Algorithm

Query

Database

Hits.Name

Hits.Length

Hits.HSP.Score

Hits.HSP.Expect

2-56

blastread

Field

Hits.HSP.Identities

Hits.HSP.Positives

Hits.HSP.Gaps

Hits.HSP.Frame

Hits.HSP.Strand

Hits.HSP.Alignment

Hits.HSPs.QueryIndices

Hits.HSPs.SubjectIndices

Statistics

References For more information about reading and interpreting BLAST reports,
see

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

Examples 1 Create a BLAST request with a GenPept accession number.

RID = blastncbi('AAA59174', 'blastp', 'expect', 1e-10)

2 Pass the RID to getblast, download the report and save the report
to a text file.

getblast(RID, 'ToFile' ,'AAA59174_BLAST.rpt')

3 Using the saved file, read the results into a MATLAB structure.

results = blastread('AAA59174_BLAST.rpt')

See Also Bioinformatics Toolbox functions blastncbi, getblast

2-57

blosum

Purpose BLOSUM scoring matrix

Syntax Matrix = blosum(Identity)
[Matrix, MatrixInfo] = blosum(Identity)
blosum(..., 'PropertyName', PropertyValue,...)
blosum(..., 'Extended', ExtendedValue)
blosum(..., 'Order', OrderValue)

Arguments
Identity Percent identity level. Enter values from 30

to 90 in increments of 5, enter 62, or enter 100.

ExtendedValue Property to control the listing of extended
amino acid codes. Enter either true (default)
or false.

OrderValue Property to specify the order amino acids are
listed in the matrix. Enter a character string of
legal amino acid characters. The length is 20
or 24 characters.

Description Matrix = blosum(Identity) returns a BLOSUM (Blocks Substitution
Matrix) matrix with a specified percent identity. The default ordering of
the output includes the extended characters B, Z, X, and *.

A R N D C Q E G H I L K M F P S T W Y V B Z X *

[Matrix, MatrixInfo] = blosum(Identity) returns a structure of
information (MatrixInfo) about a BLOSUM matrix (Matrix) with
the fields Name, Scale, Entropy, ExpectedScore, HighestScore,
LowestScore, and Order.

blosum(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-58

blosum

blosum(..., 'Extended', ExtendedValue), if Extended is false,
returns the scoring matrix for the standard 20 amino acids. Ordering of
the output when Extended is false is

A R N D C Q E G H I L K M F P S T W Y V

blosum(..., 'Order', OrderValue) returns a BLOSUM matrix
ordered by an amino acid sequence (OrderString).

Examples Return a BLOSUM matrix with a value of 50.

B50 = blosum(50)

Return a BLOSUM matrix with the amino acids in a specific order.

B75 = blosum(75,'Order','CSTPAGNDEQHRKMILVFYW')

See Also Bioinformatics Toolbox functions dayhoff, gonnet, nwalign, pam,
swalign

2-59

celintensityread

Purpose Read probe intensities from Affymetrix CEL files (Windows 32)

Syntax ProbeStructure = celintensityread(CELFiles, CDFFile)
ProbeStructure = celintensityread(..., 'CELPath',
CELPathValue, ...)
ProbeStructure = celintensityread(..., 'CDFPath',
CDFPathValue, ...)
ProbeStructure = celintensityread(..., 'PMOnly',
PMOnlyValue, ...)

Arguments
CELFiles Cell array of CEL filenames. If you set CELFiles

to '*', then it reads all CEL files in the current
directory. If you set CELFiles to ' ', then it opens
the Select CEL Files dialog box from which you
select the CEL files. From this dialog box, you can
press and hold Ctrl or Shift while clicking to select
multiple CEL files.

CDFFile String of the CDF filename. If you set CDFFile to '
', then it opens the Select CDF File dialog box from
which you select the CDF file.

CELPathValue String of the path and directory where the files
specified in CELFiles are stored.

CDFPathValue String of the path and directory where the file
specified in CDFFile is stored.

PMOnlyValue Property to include or exclude the mismatch (MM)
probe intensity values in the returned structure.
Enter true to return only perfect match (PM) probe
intensities. Enter false to return both PM and MM
probe intensities. Default is true.

Description
Note This function is supported on the Windows 32 platform only.

2-60

celintensityread

ProbeStructure = celintensityread(CELFiles, CDFFile) reads the
specified Affymetrix CEL files and the associated CDF library file, and
then creates a structure (ProbeStructure) containing probe intensities,
probe indices, and probe set IDs. CELFiles is a cell array of CEL
filenames. CDFFile is a string of a CDF filename.

If you set CELFiles to '*', then it reads all CEL files in the current
directory. If you set CELFiles to ' ', then it opens the Select CEL Files
dialog box from which you select the CEL files. From this dialog box,
you can press and hold Ctrl or Shift while clicking to select multiple
CEL files.

If you set CDFFile to ' ', then it opens the Select CDF File dialog box
from which you select the CDF file.

ProbeStructure = celintensityread(..., 'PropertyName',
PropertyValue, ...) defines optional properties that use property
name/value pairs in any order. These property name/value pairs are
as follows:

ProbeStructure = celintensityread(..., 'CELPath',
CELPathValue, ...) lets you specify a path and directory
where the files specified in CELFiles are stored.

ProbeStructure = celintensityread(..., 'CDFPath',
CDFPathValue, ...) lets you specify a path and directory
where the file specified in CDFFile is stored.

ProbeStructure = celintensityread(..., 'PMOnly',
PMOnlyValue, ...) lets you include or exclude the mismatch (MM)
probe intensity values. When PMOnlyValue is true, celintensityread
returns only perfect match (PM) probe intensities. When PMOnlyValue
is false, celintensityread returns both PM and MM probe
intensities. Default is true.

ProbeStructure contains the following fields:

2-61

celintensityread

Field Description

CDFName Path and filename of the Affymetrix library CDF
file.

CELNames Cell array of names of the Affymetrix CEL files.

NumProbeSets Number of probe sets in each CEL file.

ProbeSetIDs Cell array of the probe set IDs from the
Affymetrix CDF library file.

GenBankIDs Cell array of the probe set IDs from the
Affymetrix GIN library file, if available.

ProbeIndices Column vector containing probe indexing
information. Probes within a probe set are
numbered 0 through N - 1, where N is the
number of probes in the probe set.

PMIntensities Matrix containing PM probe intensity values.
Each row corresponds to a probe, and each
column corresponds to a CEL file, generated
from a single chip.

MMIntensities Matrix containing MM probe intensity values.
Each row corresponds to a probe, and each
column corresponds to a CEL file, generated
from a single chip.

Examples In the following example, the celintensityread function reads all
the CEL files in the current directory and a CDF file in a specified
directory. The next command line uses the rmabackadj function to
perform background adjustment on the PM probe intensities in the
PMIntensities field of PMProbeStructure.

PMProbeStructure = celintensityread('*', 'HG_U95Av2.CDF',...
'CDFPath', 'D:\Affymetrix\LibFiles\HGGenome');

BackAdjustedMatrix = rmabackadj(PMProbeStructure.PMIntensities);

2-62

celintensityread

The following example lets you select CEL files and a CDF file to read
using Open File dialog boxes:

PMProbeStructure = celintensityread(' ', ' ');

See Also affyread, agferead, gprread, probelibraryinfo, probesetlink,
probesetlookup, probesetplot, probesetvalues, sptread

2-63

classperf

Purpose Evaluate performance of classifier

Syntax classperf
cp = classperf(groundtruth)
classperf(cp, classout)
classperf(cp, classout, testidx)
cp = classperf(groundtruth, classout,...)
cp = classperf(..., 'Positive', PositiveValue,
'Negative', NegativeValue)

Description classperf provides an interface to keep track of the performance
during the validation of classifiers. classperf creates and updates
a classifier performance object (CP) that accumulates the results of
the classifier. Later, classification standard performance parameters
can be accessed using the function get or as fields in structures.
Some of these performance parameters are ErrorRate, CorrectRate,
ErrorDistributionByClass, Sensitivity and Specificity. classperf,
without input arguments, displays all the available performance
parameters.

cp = classperf(groundtruth) creates and initializes an empty object.
CP is the handle to the object. groundtruth is a vector containing the
true class labels for every observation. groundtruth can be a numeric
vector or a cell array of strings. When used in a cross-validation design
experiment, groundtruth should have the same size as the total number
of observations.

classperf(cp, classout) updates the CP object with the classifier
output classout. classout is the same size and type as groundtruth.
When classout is numeric and groundtruth is a cell array of strings,
the function grp2idx is used to create the index vector that links
classout to the class labels. When classout is a cell array of strings,
an empty string, '', represents an inconclusive result of the classifier.
For numeric arrays, NaN represents an inconclusive result.

classperf(cp, classout, testidx) updates the CP object with
the classifier output classout. classout has smaller size than
groundtruth, and testidx is an index vector or a logical index vector of

2-64

classperf

the same size as groundtruth, which indicates the observations that
were used in the current validation.

cp = classperf(groundtruth, classout,...) creates and updates the
CP object with the first validation. This form is useful when you want to
know the performance of a single validation.

cp = classperf(..., 'Positive', PositiveValue, 'Negative',
NegativeValue) sets the 'positive' and 'negative' labels to identify
the target disorder and the control classes. These labels are used to
compute clinical diagnostic test performance. p and n must consist of
disjoint sets of the labels used in groundtruth. For example, if

groundtruth = [1 2 2 1 3 4 4 1 3 3 3 2]

you could set

p = [1 2];
n = [3 4];

If groundtruth is a cell array of strings, p and n can either be cell
arrays of strings or numeric vectors whose entries are subsets of
grp2idx(groundtruth). PositiveValue defaults to the first class
returned by grp2idx(groundtruth), while NegativeValue defaults
to all the others. In clinical tests, inconclusive values ('' or NaN)
are counted as false negatives for the computation of the specificity
and as false positives for the computation of the sensitivity, that is,
inconclusive results may decrease the diagnostic value of the test.
Tested observations for which true class is not within the union of
PositiveValue and NegativeValue are not considered. However,
tested observations that result in a class not covered by the vector
groundtruth are counted as inconclusive.

Examples % Classify the fisheriris data with a K-Nearest Neighbor classifier
load fisheriris
c = knnclassify(meas,meas,species,4,'euclidean','Consensus');
cp = classperf(species,c)
get(cp)

2-65

classperf

% 10-fold cross-validation on the fisheriris data using linear
% discriminant analysis and the third column as only feature for
% classification
load fisheriris
indices = crossvalind('Kfold',species,10);
cp = classperf(species); % initializes the CP object
for i = 1:10

test = (indices == i); train = ~test;
class = classify(meas(test,3),meas(train,3),species(train));
% updates the CP object with the current classification results
classperf(cp,class,test)

end
cp.CorrectRate % queries for the correct classification rate

cp =

biolearning.classperformance

Label: ''
Description: ''
ClassLabels: {3x1 cell}
GroundTruth: [150x1 double]

NumberOfObservations: 150
ControlClasses: [2x1 double]
TargetClasses: 1

ValidationCounter: 1
SampleDistribution: [150x1 double]
ErrorDistribution: [150x1 double]

SampleDistributionByClass: [3x1 double]
ErrorDistributionByClass: [3x1 double]

CountingMatrix: [4x3 double]
CorrectRate: 1

ErrorRate: 0
InconclusiveRate: 0.0733

ClassifiedRate: 0.9267
Sensitivity: 1

2-66

classperf

Specificity: 0.8900
PositivePredictiveValue: 0.8197
NegativePredictiveValue: 1

PositiveLikelihood: 9.0909
NegativeLikelihood: 0

Prevalence: 0.3333
DiagnosticTable: [2x2 double]

ans =
0.9467

See Also Bioinformatics Toolbox functions knnclassify, svmclassify,
crossvalind

Statistics Toolbox functions grp2idx, classify

2-67

cleave

Purpose Cleave amino acid sequence with enzyme

Syntax Fragments = cleave(SeqAA, PeptidePattern, Position)
[Fragments, CuttingSites] = cleave(...)
[Fragments, CuttingSites, Lengths] = cleave(...)
cleave(..., 'PropertyName', PropertyValue,...)
cleave(..., 'PartialDigest', PartialDigestValue)

Arguments
SeqAA Amino acid sequence. Enter a character

string or a vector of integers from the table
Mapping Amino Acid Letters to Integers on
page 2-2.

Examples: 'ARN' or [1 2 3]. You can also
enter a structure with the field Sequence.

PeptidePattern Short amino acid sequence to search in a
larger sequence. Enter a character string,
vector of integers, or a regular expression.

Position Position on the PeptidePattern where
the sequence is cleaved. Enter a position
within the PeptidePattern. Position 0
corresponds to the N terminal end of the
PepetidePattern.

PartialDigestValue Property to specify the probability that a
cleavage site will be cleaved. Enter a value
from 0 to 1 (default).

Description Fragments = cleave(SeqAA, PeptidePattern, Position) cuts an
amino acid sequence (SeqAA) into parts at the specified cleavage site
specified by a peptide pattern and position.

[Fragments, CuttingSites] = cleave(...) returns a numeric vector
with the indices representing the cleave sites. A 0 (zero) is added
to the list, so numel(Fragments)==numel(CuttingSites). You can

2-68

cleave

use CuttingSites+1 to point to the first amino acid of every fragment
respective to the original sequence.

[Fragments, CuttingSites, Lengths] = cleave(...) returns a
numeric vector with the lengths of every fragment.

cleave(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

cleave(..., 'PartialDigest', PartialDigestValue) simulates a
partial digestion where PartialDigest is the probability of a cleavage
site being cut.

The following table lists some common proteases and their cleavage
sites.

Protease Peptide Pattern Position

Trypsin [KR](?!P) 1

Chymotrypsin [WYF](?!P) 1

Glutamine C [ED](?!P) 1

Lysine C [K](?!P) 1

Aspartic acid N D 1

Example 1 Get a protein sequence from the GenPept database.

S = getgenpept('AAA59174')

2 Cleave the sequence using trypsin. Trypsin cleaves after K or R when
the next residue is not P.

[parts, sites, lengths] = cleave(S.Sequence,'[KR](?!P)',1);
for i=1:10

fprintf('%5d%5d %s\n',sites(i),lengths(i),parts{i})
end

0 6 MGTGGR
6 1 R

2-69

cleave

7 34 GAAAAPLLVAVAALLLGAAGHLYPGEVCPGMDIR
41 5 NNLTR
46 21 LHELENCSVIEGHLQILLMFK
67 7 TRPEDFR
74 6 DLSFPK
80 12 LIMITDYLLLFR
92 8 VYGLESLK

100 10 DLFPNLTVIR

See Also Bioinformatics Toolbox functions restrict, rebasecuts, seqshowwords

MATLAB function regexp

2-70

clustergram

Purpose Create dendrogram and heat map

Syntax clustergram(Data)
clustergram(..., 'PropertyName', PropertyValue,...)
clustergram(..., 'RowLabels', RowLabelsValue)
clustergram(..., 'ColumnLabels', ColumnLabelsValue)
clustergram(..., 'Pdist', PdistValue)
clustergram(..., 'Linkage', LinkageValue)
clustergram(..., 'Dendrogram', DendrogramValue)
clustergram(..., 'ColorMap', ColorMapValue)
clustergram(..., 'SymmetricRange', SymmetricRangeValue)
clustergram(..., 'Dimension', DimensionValue)
clustergram(..., 'Ratio', RatioValue)

Arguments
Data Matrix where each row corresponds to a

gene. Each column is the result from one
experiment.

RowLabelsValue Property to label the rows in
Data.ColLabels Enter a cell array of
text strings.

ColumnLabelsValue Property to label the columns in Data. For
example, you can enter the names of the
genes. Enter a cell array of text strings.

PdistValue Property to select the distance metric and
pass arguments to the function pdist. The
default distance metric for a clustergram
is 'correlation'.

LinkageValue Property to select the linkage method and
pass arguments to the function linkage.
The default linkage method is 'average'

DendrogramValue Property to pass arguments to the function
dendrogram.

2-71

clustergram

ColorMapValue Property to select a colormap. Enter the
name or function handle of a function that
returns a colormap, or an M-by-3 array
containing RGB values. The default value
is REDGREENCMAP.

SymmetricRangValue Property to force the color range to be
symmetric around zero. Enter either true
(default) or false.

DimensionValue Property to select either a one-dimensional
or two-dimensional clustergram. Enter
either 1 (default) or 2.

RatioValue Property to specify the ratio of the space
that the dendrogram(s) uses.

Description clustergram(Data) creates a dendrogram and heat map from gene
expression data (Data) using hierarchical clustering with correlation
as the distance metric and using average linkage to generate the
hierarchical tree. The clustering is performed on the rows of data
(Data). The rows are typically genes and the columns are the results
from different microarrays. To cluster the columns instead of the rows,
transpose the data using the transpose (') operator.

clustergram(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

clustergram(..., 'RowLabels', RowLabelsValue) uses the contents
of a cell array (RowLabelsValue) as labels for the rows in Data.

clustergram(..., 'ColumnLabels', ColumnLabelsValue) uses the
contents of a cell array (ColumnLabelsValue) as labels for the columns
in Data.

clustergram(..., 'Pdist', PdistValue) sets the distance metric
the function pdist uses to calculate the pairwise distances between
observations. If the distance metric requires extra arguments, then
pass the arguments as a cell array. For example, to use the Minkowski
distance with exponent P you would use {'minkowski', P}. For

2-72

clustergram

information about the available options, see the help for Statistical
Toolbox function pdist.

clustergram(..., 'Linkage', LinkageValue) selects the linkage
method the function linkage uses to create the hierarchical cluster
tree. For more information about the available options, see the help for
the Statistical Toolbox function linkage.

clustergram(..., 'Dendrogram', DendrogramValue) passes
arguments the function dendrogram uses to create a dendrogram.
Dendrogram should be a cell array of parameter name/value pairs that
can be passed to dendrogram. For more information about the available
options, see the help for the Statistical Toolbox function dendrogram.

clustergram(..., 'ColorMap', ColorMapValue) specifies the
colormap (ColorMapValue) for the figure containing the clustergram.
This controls the colors used to display the heat map.

clustergram(..., 'SymmetricRange', SymmetricRangeValue), when
SymmetricRangeValue is false, disables the default behavior of forcing
the color scale of the heat map to be symmetric about zero.

clustergram(..., 'Dimension', DimensionValue) specifies whether
to create a one-dimensional or two-dimensional clustergram. The
one-dimensional clustergram clusters the rows of the data. The
two-dimensional clustergram creates the one-dimensional clustergram,
and then clusters the columns of the row-clustered data.

clustergram(..., 'Ratio', RatioValue) specifies the ratio of the
space that the dendrogram(s) uses, relative to the size of the heat map,
in the X and Y directions. If RatioValue is a single scalar value, it is
used as the ratio for both directions. If RatioValue is a two-element
vector, the first element is used for the X ratio, and the second element
is used for the Y ratio. The Y ratio is ignored for one-dimensional
clustergrams. The default ratio is 1/5.

Hold the mouse button down over the image to see the exact values
at a particular point.

2-73

clustergram

Example 1 Load filtered yeast data.

load filteredyeastdata;
clustergram(yeastvalues);

2 Add labels.

clustergram(yeastvalues,'ROWLABELS',genes,...
'COLUMNLABELS',times);

3 Change the clustering parameters.

clustergram(yeastvalues,'PDIST','euclidean',...
'LINKAGE','complete');

4 Change the dendrogram color parameter.

clustergram(yeastvalues,'ROWLABELS',genes,...
'DENDROGRAM',{'color',5});

See Also Statistics Toolbox functions cluster, dendrogram, linkage, pdist

2-74

codonbias

Purpose Calculate codon frequency for each amino acid in DNA sequence

Syntax codonbias(SeqDNA)
codonbias(..., 'PropertyName', PropertyValue,...)
codonbias(..., 'GeneticCode', GeneticCodeValue)
codonbias(..., 'Frame', FrameValue)
codonbias(..., 'Reverse', ReverseValue)
codonbias(..., 'Pie', PieValue)

Arguments
SeqDNA Nucleotide sequence (DNA or RNA). Enter a character

string with the letters A, T or U, C, and G or a vector
of integers. You can also enter a structure with the
field Sequence. codonbias does not count ambiguous
bases or gaps.

Description Many amino acids are coded by two or more nucleic acid codons.
However, the probability that a codon (from the various possible codons
for an amino acid) is used to code an amino acid is different between
sequences. Knowing the frequency of each codon in a protein coding
sequence for each amino acid is a useful statistic.

codonbias(SeqDNA) calculates the codon frequency in percent for each
amino acid in a DNA sequence (SeqDNA).

codonbias(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

codonbias(..., 'GeneticCode', GeneticCodeValue) selects an
alternative genetic code (GenetidCodeValue). The default value is
'Standard' or 1. For a list of genetic codes, see Genetic Code on page
2-133.

codonbias(..., 'Frame', FrameValue) selects a reading frame
(FrameValue). FrameValue can be 1 (default), 2, or 3.

2-75

codonbias

codonbias(..., 'Reverse', ReverseValue), when ReverseValue is
true, returns the codon frequency for the reverse complement of the
DNA sequence (SeqDNA).

codonbias(..., 'Pie', PieValue), when PieValue is true, creates
a figure of 20 pie charts for each amino acid.

Example 1 Import a nucleotide sequence from GenBank to MATLAB. For
example, get the DNA sequence that codes for a human insulin
receptor.

S = getgenbank('M10051');

2 Calculate the codon frequency for each amino acid and plot the
results.

cb = codonbias(S.Sequence,'PIE',true)

cb.Ala
ans =

Codon: {'GCA' "GCC' "GCG' 'GCT'}
Freq: [0.1600 0.3867 0.2533 02000]

MATLAB draws a figure with 20 pie charts for the 20 amino acids.

2-76

codonbias

See Also Bioinformatics Toolbox functions aminolookup, codoncount,
geneticcode, nt2aa

2-77

codoncount

Purpose Count codons in nucleotide sequence

Syntax Codons = codoncount(SeqNT)
codoncount(..., 'PropertyName', PropertyValue,...)
codoncount(..., 'Frame', FrameValue)
codoncount(..., 'Reverse', ReverseValue)
codoncount(..., 'Figure', FigureValue)

Arguments SeqNT Nucleotide sequence. Enter a character string or
vector of integers. You can also enter a structure
with the field Sequence.

FrameValue Property to select a reading frame. Enter 1 (default),
2, or 3.

ReverseValue Property to control returning the complement
sequence. Enter true or false (default).

FigureValue Property to control plotting a heat map. Enter
either true or false (default).

Description Codons = codoncount(SeqNT) counts the number of codon in a sequence
(SeqNT) and returns the codon counts in a structure with the fields AAA,
AAC, AAG, ..., TTG, TTT.

• For sequences that have codons with the character U, the U characters
are added to codons with T characters.

• If the sequence contains ambiguous nucleotide characters (R Y K M
S W B D H V N) , or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol' appear
in the sequence.
These will be in Others.

2-78

codoncount

• If the sequence contains undefined nucleotide characters (E F H I
J L O P Q X Z), codoncount ignores the characters and displays a
warning message.

Warning: Unknown symbols 'symbol' appear
in the sequence.
These will be ignored.

[Codons, CodonArray] = codoncount(SeqNT) returns a 4x4x4 array
(CodonArray) with the raw count data for each codon. The three
dimensions correspond to the three positions in the codon. For example,
the element (2,3,4) of the array gives the number of CGT codons where
A <=> 1, C <=> 2, G <=> 3, and T <=> 4.

codoncount(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

codoncount(..., 'Frame', FrameValue) counts the codons in a
specific reading frame.

codoncount(..., 'Reverse', ReverseValue), when ReverseValue is
true, counts the codons for the reverse complement of the sequence.

codoncount(..., 'Figure', FigureValue), when FigureValue is
true displays a figure showing a heat map of the codon counts.

Examples Count the number of standard codons in a nucleotide sequence.

codons = codoncount('AAACGTTA')

codons =
AAA: 1 ATC: 0 CGG: 0 GCT: 0 TCA: 0
AAC: 0 ATG: 0 CGT: 1 GGA: 0 TCC: 0
AAG: 0 ATT: 0 CTA: 0 GGC: 0 TCG: 0
AAT: 0 CAA: 0 CTC: 0 GGG: 0 TCT: 0
ACA: 0 CAC: 0 CTG: 0 GGT: 0 TGA: 0
ACC: 0 CAG: 0 CTT: 0 GTA: 0 TGC: 0
ACG: 0 CAT: 0 GAA: 0 GTC: 0 TGG: 0
ACT: 0 CCA: 0 GAC: 0 GTG: 0 TGT: 0

2-79

codoncount

AGA: 0 CCC: 0 GAG: 0 GTT: 0 TTA: 0
AGC: 0 CCG: 0 GAT: 0 TAA: 0 TTC: 0
AGG: 0 CCT: 0 GCA: 0 TAC: 0 TTG: 0
AGT: 0 CGA: 0 GCC: 0 TAG: 0 TTT: 0
ATA: 0 CGC: 0 GCG: 0 TAT: 0

Count the codons in the second frame for the reverse complement of
a sequence.

r2codons = codoncount('AAACGTTA', 'Frame',2,...
'Reverse',true);

Create a heat map for the codons in a nucleotide sequence.

a = randseq(1000);
codoncount(a,'Figure', true);

2-80

codoncount

See Also Bioinformatics Toolbox functions aacount , basecount, baselookup,
codonbias, dimercount, nmercount, ntdensity, seqrcomplement,
seqwordcount

2-81

cpgisland

Purpose Locate CpG islands in DNA sequence

Syntax cpgisland(SeqDNA)
cpgisland(..., 'PropertyName', PropertyValue,...)
cpgisland(..., 'Window', WindowValue)
cpgisland(..., 'MinIsland', MinIslandValue)
cpgisland(..., 'CpGoe', CpGoeValue)
cpgisland(..., 'GCmin', GCminValue)
cpgisland(..., 'Plot', PlotValue)

Arguments
SeqDNA DNA nucleotide sequence. Enter a character

string with the letters A, T, C, and G. You can
also enter a structure with the field Sequence.
cpgisland does not count ambiguous bases or
gaps.

Description cpgisland(SeqDNA) finds CpG islands by marking bases within a
moving window of 100 DNA bases with a GC content greater than 50%
and a CpGobserved/CpGexpected ratio greater than 60%.

cpgisland(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

cpgisland(..., 'Window', WindowValue) specifies the window size
for calculating GC percent and CpGobserved/CpGexpected ratios for
a sequence. The default value is 100 bases. A smaller window size
increases the noise in a plot.

cpgisland(..., 'MinIsland', MinIslandValue) specifies the
minimum number of consecutive marked bases to report. The default
value is 200 bases.

cpgisland(..., 'CpGoe', CpGoeValue) specifies the minimum
CpGobserved/CpGexpected ratio in each window needed to mark a
base. Enter a value between 0 and 1. The default value is 0.6. This
ratio is defined as

2-82

cpgisland

CPGobs/CpGexp = (NumCpGs*Length)/(NumGs*NumCs)

cpgisland(..., 'GCmin', GCminValue) specifies the minimum GC
percent in a window needed to mark a base. Enter a value between 0
and 1. The default value is 0.5.

cpgisland(..., 'Plot', PlotValue), when Plot is true, plots GC
content, CpGoe content, CpG islands greater than the minimum island
size, and all potential CpG islands for the specified criteria.

Example 1 Import a nucleotide sequence from GenBank. For example, get a
sequence from Homo Sapiens chromosome 12.

S = getgenbank('AC156455');

2 Calculate the CpG islands in the sequence and plot the results.

cpgisland(S.Sequence,'PLOT',true)

MATLAB lists the CpG islands greater than 200 bases and draws a
figure.

ans =
Starts: [4470 28753 29347 36229]
Stops: [5555 29064 29676 36450]

2-83

cpgisland

See Also Bioinformatics Toolbox functions basecount, ntdensity, seqshoworfs

2-84

crossvalind

Purpose Generate cross-validation indices

Syntax Indices = crossvalind('Kfold', N,
K)
[Train, Test] = crossvalind('HoldOut', N, P)
[Train, Test] = crossvalind('LeaveMOut', N, M)
[Train, Test] = crossvalind('Resubstitution', N, [P,Q])
[...] = crossvalind(Method, Group, ...)
[...] = crossvalind(Method, Group, ..., 'Classes', C)
[...] = crossvalind(Method, Group, ..., 'Min', MinValue)

Description Indices = crossvalind('Kfold', N, K) returns randomly generated
indices for a K-fold cross-validation of N observations. Indices contains
equal (or approximately equal) proportions of the integers 1 through
K that define a partition of the N observations into K disjoint subsets.
Repeated calls return different randomly generated partitions. K
defaults to 5 when omitted. In K-fold cross-validation, K-1 folds are
used for training and the last fold is used for evaluation. This process is
repeated K times, leaving one different fold for evaluation each time.

[Train, Test] = crossvalind('HoldOut', N, P) returns logical
index vectors for cross-validation of N observations by randomly
selecting P*N (approximately) observations to hold out for the evaluation
set. P must be a scalar between 0 and 1. P defaults to 0.5 when omitted,
corresponding to holding 50% out. Using holdout cross-validation within
a loop is similar to K-fold cross-validation one time outside the loop,
except that non-disjointed subsets are assigned to each evaluation.

[Train, Test] = crossvalind('LeaveMOut', N, M), where M is
an integer, returns logical index vectors for cross-validation of N
observations by randomly selecting M of the observations to hold out for
the evaluation set. M defaults to 1 when omitted. Using LeaveMOut
cross-validation within a loop does not guarantee disjointed evaluation
sets. Use K-fold instead.

[Train, Test] = crossvalind('Resubstitution', N, [P,Q])
returns logical index vectors of indices for cross-validation of N
observations by randomly selecting P*N observations for the evaluation

2-85

crossvalind

set and Q*N observations for training. Sets are selected in order to
minimize the number of observations that are used in both sets. P
and Q are scalars between 0 and 1. Q=1-P corresponds to holding
out (100*P)%, while P=Q=1 corresponds to full resubstitution. [P,Q]
defaults to [1,1] when omitted.

[...] = crossvalind(Method, Group, ...) takes the group
structure of the data into account. Group is a grouping vector that
defines the class for each observation. Group can be a numeric vector,
a string array, or a cell array of strings. The partition of the groups
depends on the type of cross-validation: For K-fold, each group is
divided into K subsets, approximately equal in size. For all others,
approximately equal numbers of observations from each group are
selected for the evaluation set. In both cases the training set contains at
least one observation from each group.

[...] = crossvalind(Method, Group, ..., 'Classes', C)
restricts the observations to only those values specified in C. C can be a
numeric vector, a string array, or a cell array of strings, but it is of the
same form as Group. If one output argument is specified, it contains the
value 0 for observations belonging to excluded classes. If two output
arguments are specified, both will contain the logical value false for
observations belonging to excluded classes.

[...] = crossvalind(Method, Group, ..., 'Min', MinValue)
sets the minimum number of observations that each group has in the
training set. Min defaults to 1. Setting a large value for Min can help to
balance the training groups, but adds partial resubstitution when there
are not enough observations. You cannot set Min when using K-fold
cross-validation.

Example 1 Create a 10-fold cross-validation to compute classification error.

load fisheriris
indices = crossvalind('Kfold',species,10);
cp = classperf(species);
for i = 1:10

test = (indices == i); train = ~test;

2-86

crossvalind

class = classify(meas(test,:),meas(train,:),species(train,:));
classperf(cp,class,test)

end
cp.ErrorRate

Approximate a leave-one-out prediction error estimate.

load carbig
x = Displacement; y = Acceleration;
N = length(x);
sse = 0;
for i = 1:100

[train,test] = crossvalind('LeaveMOut',N,1);
yhat = polyval(polyfit(x(train),y(train),2),x(test));
sse = sse + sum((yhat - y(test)).^2);

end
CVerr = sse / 100

Divide cancer data 60/40 without using the 'Benign' observations.
Assume groups are the true labels of the observations.

labels = {'Cancer','Benign','Control'};
groups = labels(ceil(rand(100,1)*3));
[train,test] = crossvalind('holdout',groups,0.6,'classes',...

{'Control','Cancer'});
sum(test) % Total groups allocated for testing
sum(train) % Total groups allocated for training

See Also Bioinformatics Toolbox

• functions — classperf, knnclassify, svmclassify

Statistics Toolbox

• functions — classify, grp2idx

2-87

dayhoff

Purpose Dayhoff scoring matrix

Syntax ScoringMatrix = dayhoff

Description ScoringMatrix = dayhoff returns a PAM250 type scoring matrix. The
order of amino acids in the matrix is A R N D C Q E G H I L K M
F P S T W Y V B Z X *.

See Also Bioinformatics Toolbox functions blosum, gonnet, pam.

2-88

dimercount

Purpose Count dimers in sequence

Syntax Dimers = dimercount(SeqNT)
[Dimers, Percent] = dimercount(SeqNT)
dimercount(..., 'PropertyName', PropertyValue,...)
dimercount(..., 'Chart', ChartStyle)

Arguments
SeqNT Nucleotide sequence. Enter a character string

or vector of integers.

Examples: 'ACGT' and [1 2 3 4].You can
also enter a structure with the field
Sequence.

ChartStyleValue Property to select the type of plot. Enter 'pie'
or 'bar'.

Description Dimers = dimercount(SeqNT) counts the number of nucleotide dimers
in a 1-by-1 sequence and returns the dimer counts in a structure with
the fields AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT.

• For sequences that have dimers with the character U, the U characters
are added to dimers with T characters.

• If the sequence contains ambiguous nucleotide characters (R Y K M
S W B D H V N) , or gaps indicated with a hyphen (-), this function
creates a field Others and displays a warning message.

Warning: Ambiguous symbols 'symbol list' appear
in the sequence.
These will be in Others.

• If the sequence contains undefined nucleotide characters (E F H I
J L O P Q X Z), codoncount ignores the characters and displays a
warning message.

2-89

dimercount

Warning: Unknown symbols 'symbol list' appear
in the sequence.
These will be ignored.

[Dimers, Percent] = dimercount(SeqNT) returns a 4-by-4 matrix with
the relative proportions of the dimers in SeqNT. The rows correspond
to A, C, G, and T in the first element of the dimer, and the columns
correspond to A, C, G, and T in the second element.

dimercount(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

dimercount(..., 'Chart', ChartStyle) creates a chart showing the
relative proportions of the dimers.

Examples Count the number of dimers in a nucleotide sequence.

dimercount('TAGCTGGCCAAGCGAGCTTG')

ans =
AA: 1
AC: 0
AG: 3
AT: 0
CA: 1
CC: 1
CG: 1
CT: 2
GA: 1
GC: 4
GG: 1
GT: 0
TA: 1
TC: 0
TG: 2
TT: 1

2-90

dimercount

See Also Bioinformatics Toolbox functions aacount, basecount, baselookup,
codoncount, nmercount, ntdensity

2-91

dna2rna

Purpose Convert DNA sequence to RNA sequence

Syntax SeqRNA = dna2rna(SeqDNA)

Arguments
SeqDNA DNA sequence. Enter either a character string

with the characters A, T, G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers from the table Mapping Nucleotide Letters
to Integers on page 2-329. You can also enter a
structure with the field Sequence.

SeqRNA RNA sequence.

Description SeqRNA = dna2rna(SeqDNA) converts a DNA sequence to an RNA
sequence by converting any thymine nucleotides (T) in the DNA
sequence to uracil (U). The RNA sequence is returned in the same
format as the DNA sequence. For example, if SeqDNA is a vector of
integers, then so is SeqRNA.

Examples Convert a DNA sequence to an RNA sequence.

rna = dna2rna('ACGATGAGTCATGCTT')

rna =
ACGAUGAGUCAUGCUU

See Also Bioinformatics Toolbox function rna2dna

MATLAB functions regexp, strrep

2-92

dolayout (biograph)

Purpose Calculate node positions and edge trajectories

Syntax dolayout(BGobj)
dolayout(..., 'PropertyName', PropertyValue,...)
dolayout(..., 'OnlyPaths', OnlyPathsValue)

Arguments
BGobj Biograph object.

OnlyPathsValue Property to control the calculation of node
position and edge paths. Enter 'true' to
calculate only the edge paths.

Description dolayout(BGobj) calls the layout engine to calculate the optimal
position for each node so that its 2–D rendering is clean and uncluttered,
and then calculates the best curves to represent the edges. The
following biograph object properties interact with the layout engine:

• LayoutType — Selects the layout engine as 'hierarchical',
'equilibrium', or 'radial'.

• LayoutScale — Rescales the sizes of the node before calling the
layout engine. This gives more space to the layout and reduces the
overlapping of nodes.

• NodeAutoSize — When NodeAutoSize is 'on', the layout engine
uses the node properties FontSize, Shape, and LayoutScale to
precalculate the actual size of every node. When NodeAutoSize is
'off', the layout engine uses the node property Size.

dolayout(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

dolayout(..., 'OnlyPaths', OnlyPathsValue), when
OnlyPathsValue is 'true', leaves the nodes at their current positions
and calculates new curves for the edges.

2-93

dolayout (biograph)

Example 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)
bg.nodes(1).Position

Nodes do not have a position yet.

2 Call the layout engine and render the graph.

dolayout(bg)
bg.nodes(1).Position
view(bg)

3 Manually modify a node position and recalculate the paths.

bg.nodes(1).Position = [150 150];
dolayout(bg, 'Onlypaths', true)
view(bg)

See Also Bioinformatics Toolbox

• function — biograph (object constructor)

• biograph object methods — dolayout, getancestors,
getdescendants, getedgesbynodeid, getnodesbyid, getrelatives,
view

MATLAB

• functions — get, set

2-94

dnds

Purpose Estimate synonymous and nonsynonymous substitution rates

Syntax [Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2)
dnds(..., 'PropertyName', PropertyValue,...)
dnds(..., 'GeneticCode', GeneticCodeValue)
dnds(..., 'Method', MethodValue)

Arguments
SeqNT1, SeqNT2 Nucleotide sequences. Enter a character

string or a structure with the field Sequence.

GeneticCodeValue Property to select a genetic code. Enter a
code number or code name from the table
Genetic Code on page 2-133. If you use a
code name, you can truncate the name to the
first two characters of the name.

MethodValue Property to select the method for calculating
substitution rates. Enter 'NG', 'LWL', or
'PBL'.

Description [Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2) estimates the
synonymous and nonsynonymous substitution rate per site between
two homologous nucleotide sequences (SeqNT1, SeqNT2) by comparing
codons using the Nei-Gojobori method. This function returns the
nonsynonymous substitution rate (Dn), the synonymous substitution
rate (Ds), the variance for the nonsynonymous substitution rate (Vardn),
and the variance for the synonymous substitutions per site (Vards). Any
codons that include gaps are excluded from calculation. This analysis
considers the number of codons in the shortest sequence.

dnds(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

dnds(..., 'GeneticCode', GeneticCodeValue) calculates
synonymous and nonsynonymous substitution rates using the specified
genetic code. The default is 'Standard' or 1.

2-95

dnds

dnds(..., 'Method', MethodValue) allows you to calculate
synonymous and nonsynonymous substitution rates using the following
approaches:

'NG' — uses the Nei-Gojobori method ’86 (default)

'LWL' — uses the Li-Wu-Luo method ’85

'PBL' — uses the Pamilo-Bianchi-Li method ’93

References [1] Li W, Wu C, Luo C (1984), “A new method for estimating synonymous
and aonsynonymous rates of nucleotide substitution considering the
relative likelihood of nucleotide and codon changes”, Molecular Biology
and Evolution, 2(2):150-174.

[2] Nei M, Gojobori T (1986), ”Simple methods for estimating the
numbers of synonymous and nonsynonymous nucleotide substitutions”,
Molecular Biology and Evolution, 3(5):418-426.

[3] Nei M, Jin L (1989), “Variances of the average numbers of nucleotide
substitutions within and between populations”, Molecular Biology and
Evolution, 6(3):290-300.

[4] Nei M, Kumar S (2000), “Synomymous and nonsymonymous
nucleotide substitutions” in Molecular Evolution and Phylogenetics,
Oxford University Press.

[5] Pamilo P, Bianchi N (1993), “Evolution of the Zfx And Zfy genes:
rates and interdependence between the genes”, Molecular Biology and
Evolution, 10(2): 271-281.

Example 1 Get two sequences from Genbank for the human immunodeficiency
virus.

gag1 = getgenbank('L11768')
gag2 = getgenbank('L11770')

2-96

dnds

2 Pairwise align the sequences using the Needleman-Wunsch
algorithm.

[sc,al]= nwalign(gag1,gag2,'alpha','nt');

3 Calculate synonymous and nonsynonymous substitution rates.

[dn ds vardn vards] = dnds(al(1,:), al(3,:))

dn =
0.0240

ds =
0.0739

vardn =
2.2745e-005

vards =
2.6447e-004

See Also Bioinformatics Toolbox functions dndsml, geneticcode, nt2aa,
seqpdist

2-97

dndsml

Purpose Estimate synonymous-nonsynonymous substitution rates by the
maximum likelihood method

Syntax [Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2)
dndsml(..., 'PropertyName', PropertyValue,...)
dndsml(..., 'GeneticCode', GeneticCodeValue)

Arguments
SeqNT1, SeqNT2 Nucleotide sequences. Enter a character string

or a structure with the field Sequence.

GeneticCodeValue Property to select a genetic code. Enter a code
number or code name from the table Genetic
Code on page 2-133. If you use a code name, you
can truncate the name to the first two characters
of the name.

Description [Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2) estimates synonymous and
nonsynonymous substitution rates between two homologous sequences
(SeqNT1, SeqNT2) by the maximum likelihood method. dndsml returns
the nonsynonymous substitution rate (Dn), the synonymous substitution
rate (Ds), and the likelihood of this estimate (Like). The maximum
likelihood method is best suited for sequences larger than 100 bases.
Gaps are ignored in this analysis. This analysis considers the number
of codons in the shortest sequence.

dndsml(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

dndsml(..., 'GeneticCode', GeneticCodeValue) calculates
synonymous and nonsynonymous substitution rates using the specified
genetic code. The default value is 'Standard' or 1.

Examples 1 Get two sequences from Genbank for the human immunodeficiency
virus.

gag1 = getgenbank('L11768')
gag2 = getgenbank('L11770')

2-98

dndsml

2 Pairwise align the sequences using the Needleman-Wunsch
algorithm.

[sc,al]= nwalign(gag1,gag2,'alpha','nt');

3 Calculate synonymous and nonsynonymous substitution rates.

[dn ds like] = dndsml(al(1,:), al(3,:))

dn =
0.0259

ds =
0.0624

like =
-2.1864e+003

References [1] Tamura K, Mei M (1993), “Estimation of the number of nucleotide
substitutions in the control region of mitochondrial DNA in humans and
chimpanzees”, Molecular Biology and Evolution, 10:512–526.

[2] Yang Z, Nielsen R (2000), “Estimating synonymous and
nonsynonymous substitution rates under realistic evolutionary models”,
Molecular Biology and Evolution, 17:32–43.

See Also Bioinformatics Toolbox functions dnds, geneticcode, nt2aa, seqpdist

2-99

emblread

Purpose Read data from EMBL file

Syntax EMBLData = emblread('File')
EMBLSeq = emblread ('File',
SequenceOnly', SequenceOnlyValue)

Arguments
File EMBL formatted file (ASCII text file). Enter

a filename, a path and filename, or a URL
pointing to a file. File can also be a MATLAB
character array that contains the text for a
filename.

SequenceOnlyValue Property to control reading EMBL file
information. If SequenceOnlyValue is
true, emblread returns only the sequence
(EMBLSeq).

EMBLData MATLAB structure with fields corresponding
to EMBL data.

EMBLSeq MATLAB character string without metadata
for the sequence.

Description EMBLData = emblread('File') reads data from an EMBL formatted
file (File) and creates a MATLAB structure (EMBLData) with fields
corresponding to the EMBL two-character line type code. Each line type
code is stored as a separate element in the structure.

EMBLData for the 137.0 version contains the following fields:

Field

Comments

Identification

Accession

SequenceVersion

2-100

emblread

Field

Datecreated

Dateupdated

Description

Keyword

OrganismSpecies

OrganismClassification

Organelle

Reference.Number

Reference.Comment

Reference.Position

Reference{#}.MedLine

Referemce{#}.PubMed

Reference.Authors

Reference.Title

Reference.Location

DatabaseCrossReference

Feature

Basecount

Sequence

EMBLSeq = emblread ('File', SequenceOnly', SequenceOnlyValue),
when SequenceOnlyValue is true, reads only the sequence information.

Examples Get sequence information from the Web, save to a file, and then read
back into MATLAB.

getembl('X00558','ToFile','rat_protein.txt');
EMBLData = emblread('rat_protein.txt')

2-101

emblread

See Also Bioinformatics Toolbox functions fastaread, genbankread, getembl,
seqtool

2-102

exprprofrange

Purpose Calculate range of gene expression profiles

Syntax Range = exprprofrange(Data)
[Range, LogRange] = exprprofrange(Data)
exprprofrange(..., 'PropertyName', PropertyValue,...)
exprprofrange(..., 'ShowHist', ShowHistValue)

Arguments
Data Matrix where each row corresponds to a gene.

ShowHistValue Property to control displaying a histogram with
range data. Enter either true (include range
data) or false. The default value is false.

Description Range = exprprofrange(Data) calculates the range of each expression
profile in a data set (Data).

[Range, LogRange] = exprprofrange(Data) returns the log range,
that is, log(max(prof))- log(min(prof)), of each expression profile.
If you do not specify output arguments, exprprofrange displays a
histogram bar plot of the range.

exprprofrange(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

exprprofrange(..., 'ShowHist', ShowHistValue), when
ShowHistValue is true, displays a histogram of the range data.

Examples Calculate the range of expression profiles for yeast data as gene
expression changes during the metabolic shift from fermentation to
respiration.

load yeastdata
range = exprprofrange(yeastvalues,'ShowHist',true);

See Also Bioinformatics Toolbox function exprprofvar, generangefilter

2-103

exprprofvar

Purpose Calculate variance of gene expression profiles

Syntax Variance = exprprofvar(Data)
exprprofvar(..., 'PropertyName', PropertyValue,...)
exprprofvar(..., 'ShowHist', ShowHistValue)

Arguments
Data Matrix where each row corresponds to a gene.

ShowHistValue Property to control the display of a histogram with
variance data. Enter either true or false (default).

Description Variance = exprprofvar(Data) calculates the variance of each
expression profile in a data set (Data). If you do not specify output
arguments, this function displays a histogram bar plot of the range.

exprprofvar(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

exprprofvar(..., 'ShowHist', ShowHistValue), when ShowHist is
true, displays a histogram of the range data .

Examples Calculate the variance of expression profiles for yeast data as gene
expression changes during the metabolic shift from fermentation to
respiration.

load yeastdata
datavar = exprprofvar(yeastvalues,'ShowHist',true);

See Also Bioinformatics Toolbox functions exprprofrange, generangefilter,
genevarfilter

2-104

fastaread

Purpose Read data from FASTA file

Syntax FASTAData = fastaread('File')
[Header, Sequence] = fastaread('File')
multialignread(..., ’PropertyName', PropertyValue,...)
multialignread(..., 'IgnoreGaps', IgnoreGapsValue)

Arguments
File FASTA formatted file (ASCII text file). Enter

a filename, a path and filename, or a URL
pointing to a file. File can also be a MATLAB
character array that contains the text for a
filename.

IgnoreGapsValue Property to control removing gap symbols.
Enter either true or false (default).

FASTAData MATLAB structure with the fields Header and
Sequence.

Description fastaread reads data from a FASTA formatted file into a MATLAB
structure with the following fields:

Field

Header

Sequence

A file with a FASTA format begins with a right angle bracket (>) and a
single line description. Following this description is the sequence as a
series of lines with fewer than 80 characters. Sequences are expected to
use the standard IUB/IUPAC amino acid and nucleotide letter codes.

For a list of codes, see aminolookup and baselookup.

FASTAData = fastaread('File') reads a file with a FASTA format
and returns the data in a structure. FASTAData.Header is the header

2-105

fastaread

information, while FASTAData.Sequence is the sequence stored as a
string of letters.

[Header, Sequence] = fastaread('File') reads data from a file
into separate variables. If the file contains more than one sequence,
then header and sequence are cell arrays of header and sequence
information.

multialignread(..., ’PropertyName', PropertyValue,...)defines
optional properties. The property name/value pairs can be in any format
supported by the function set (for example, name-value string pairs,
structures, and name-value cell array pairs).

multialignread(..., 'IgnoreGaps', IgnoreGapsValue), when
IgnoreGapsValue is true, removes any gap symbol ('-' or '.') from
the sequences. Default is false.

Examples Read the sequence for the human p53 tumor gene.

p53nt = fastaread('p53nt.txt')

Read the sequence for the human p53 tumor protein.

p53aa = fastaread('p53aa.txt')

Read the human mitochondrion genome in FASTA format.

entrezSite = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?'
textOptions = '&txt=on &view=fasta'
genbankID = '&list_uids=NC_001807'
mitochondrion = fastaread([entrezSite textOptions genbankID])

See Also Bioinformatics Toolbox function emblread, fastawrite, genbankread,
genpeptread, multialignread, seqprofile, seqtool

2-106

fastawrite

Purpose Write to file with FASTA format

Syntax fastawrite('File', Data)
fastawrite('File', Header, Sequence)

Arguments File Enter either a filename or a path and
filename supported by your operating
system. (ASCII text file).

Data Enter a character string with a
FASTA format, a sequence object, a
structure containing the fields Sequence
and Header, or a GenBank/GenPept
structure.

Header Information about the sequence.

Sequence Nucleotide or amino acid sequence using
the standard IUB/IUPAC codes. For a list
of valid characters, see Mapping Amino
Acid Letters to Integers on page 2-2 and
Mapping Nucleotide Letters to Integers
on page 2-329.

Description fastawrite('File', Data) writes the contents of Data to a file with a
FASTA format.

fastawrite('File', Header, Sequence) writes header and sequence
information to a file with a FASTA format.

Examples %get the sequence for the human p53 gene from GenBank.
seq = getgenbank('NM_000546')

%find the CDS line in the FEATURES information.
cdsline = strmatch('CDS',seq.Features)

%read the coordinates of the coding region.

2-107

fastawrite

[start,stop] = strread(seq.Features(cdsline,:),'%*s%d..%d')

%extract the coding region.
codingSeq = seq.Sequence(start:stop)

%write just the coding region to a FASTA file.
fastawrite('p53coding.txt','Coding region for p53',codingSeq);

Save multiple sequences.

data(1).Sequence = 'ACACAGGAAA'
data(1).Header = 'First sequence'
data(2).Sequence = 'ACGTCAGGTC'
data(2).Header = 'Second sequence'

fastawrite('my_sequences.txt', data)
type('my_sequences.txt')

>First sequence
ACACAGGAAA

>Second sequence
ACGTCAGGTC

See Also Bioinformatics Toolbox function fastaread, seqtool

2-108

featuresmap

Purpose Draw linear or circular map of features from GenBank structure

Syntax featuresmap(GBStructure)
featuresmap(GBStructure, FeatList)
featuresmap(GBStructure, FeatList, Levels)
featuresmap(GBStructure, Levels)
[Handles, OutFeatList] = featuresmap(...)
featuresmap(..., 'FontSize', FontSizeValue, ...)
featuresmap(..., 'ColorMap', ColorMapValue, ...)
featuresmap(..., 'Qualifiers', QualifiersValue, ...)
featuresmap(..., 'ShowPositions', ShowPositionsValue, ...)

Arguments
GBStructure GenBank structure, typically created using

the getgenbank or the genbankread function.

FeatList Cell array of features (from the list of all
features in the GenBank structure) to include
in or exclude from the map.

• If FeatList is a cell array of features,
these features are mapped. Any features
in FeatList not found in the GenBank
structure are ignored.

• If FeatList includes '-' as the first
string in the cell array, then the remaining
strings (features) are not mapped.

By default, FeatList is the a list of all
features in the GenBank structure.

2-109

featuresmap

Levels Vector of N integers, where N is the number of
features. Each integer represents the level in
the map for the corresponding feature. For
example, if Levels = [1, 1, 2, 3, 3], the
first two features would appear on level 1, the
third feature on level 2, and the fourth and
fifth features on level 3. By default, Levels =
[1:N].

FontSizeValue Scalar that sets the font size (points) for the
annotations of the features. Default is 9.

ColorMapValue Three-column matrix, to specify a list of
colors to use for each feature. This matrix
replaces the default matrix, which specifies
the following colors and order: blue, green,
red, cyan, magenta, yellow, brown, light
green, orange, purple, gold, and silver. In the
matrix, each row corresponds to a color, and
each column specifies red, green, and blue
intensity respectively. Valid values for the
RGB intensities are 0.0 to 1.0.

QualifiersValue Cell array of strings to specify an ordered list
of qualifiers to search for in the structure
and use as annotations. For each feature,
the first matching qualifier found from the
list is used for its annotation. If a feature
does not include any of the qualifiers, no
annotation displays for that feature. By
default, QualifiersValue = {’gene’,
’product’, ’locus_tag’, ’note’,
’db_xref’, ’protein_id’}. Provide your
own QualifiersValue to limit or expand the
list of qualifiers or change the search order.

2-110

featuresmap

Tip Set QualifiersValue = {} to create a
map with no annotations.

Tip To determine all qualifiers available for
a given feature, do either of the following:

• Create the map, and then click a feature or
its annotation to list all qualifiers for that
feature.

• Use the featuresparse command to parse
all the features into a new structure, and
then use the fieldnames command to
list the qualifiers for a specific feature.
See Determining Qualifiers for a Specific
Feature on page 2-117.

ShowPositionsValue Property to add the sequence position to
the annotation label for each feature. Enter
true to add the sequence position. Default
is false.

Description featuresmap(GBStructure) creates a linear or circular map of all features
from a GenBank structure, typically created using the getgenbank or
the genbankread function.

featuresmap(GBStructure, FeatList) creates a linear or circular map
of a subset of features from a GenBank structure. FeatList lets you
specify features (from the list of all features in the GenBank structure)
to include in or exclude from the map.

2-111

featuresmap

• If FeatList is a cell array of features, these features are mapped.
Any features in FeatList not found in the GenBank structure are
ignored.

• If FeatList includes '-' as the first string in the cell array, then the
remaining strings (features) are not mapped.

By default, FeatList is a list of all features in the GenBank structure.

featuresmap(GBStructure, FeatList, Levels) or
featuresmap(GBStructure, Levels) indicates which level on the map each
feature is drawn. Level 1 is the left-most (linear map) or inner-most
(circular map) level, and level N is the right-most (linear map) or
outer-most (circular map) level, where N is the number of features.

Levels is a vector of N integers, where N is the number of features. Each
integer represents the level in the map for the corresponding feature.
For example, if Levels = [1, 1, 2, 3, 3], the first two features would
appear on level 1, the third feature on level 2, and the fourth and fifth
features on level 3. By default, Levels = [1:N].

[Handles, OutFeatList] = featuresmap(...) returns a list of handles
for each feature in OutFeatList. It also returns OutFeatList, which is
a cell array of the mapped features.

Tip

Use Handles and OutFeatList with the legend command to create a
legend of features.

featuresmap(..., 'PropertyName', PropertyValue, ...) defines
optional properties that use property name/value pairs in any order.
These property name/value pairs are as follows:

featuresmap(..., 'FontSize', FontSizeValue, ...) sets the font size
(points) for the annotations of the features. Default FontSizeValue is 9.

2-112

featuresmap

featuresmap(..., 'ColorMap', ColorMapValue, ...) specifies a list of
colors to use for each feature. This matrix replaces the default matrix,
which specifies the following colors and order: blue, green, red, cyan,
magenta, yellow, brown, light green, orange, purple, gold, and silver.
ColorMapValue is a three-column matrix, where each row corresponds
to a color, and each column specifies red, green, and blue intensity
respectively. Valid values for the RGB intensities are 0.0 to 1.0.

featuresmap(..., 'Qualifiers', QualifiersValue, ...) lets you specify
an ordered list of qualifiers to search for and use as annotations. For
each feature, the first matching qualifier found from the list is used for
its annotation. If a feature does not include any of the qualifiers, no
annotation displays for that feature. QualifiersValue is a cell array
of strings. By default, QualifiersValue = {’gene’, ’product’,
’locus_tag’, ’note’, ’db_xref’, ’protein_id’}. Provide your
own QualifiersValue to limit or expand the list of qualifiers or change
the search order.

Tip

Set QualifiersValue = {} to create a map with no annotations.

2-113

featuresmap

Tip

To determine all qualifiers available for a given feature, do either of
the following:

• Create the map, and then click a feature or its annotation to list all
qualifiers for that feature.

• Use the featuresparse command to parse all the features into a
new structure, and then use the fieldnames command to list the
qualifiers for a specific feature. See Determining Qualifiers for a
Specific Feature on page 2-117.

featuresmap(..., 'ShowPositions', ShowPositionsValue, ...)
lets you add the sequence position to the annotation label. If
ShowPositionsValue is true, sequence positions are added to the
annotation labels. Default is false.

2-114

featuresmap

2-115

featuresmap

2-116

featuresmap

After creating a map:

• Click a feature or annotation to display a list of all qualifiers for that
feature.

• Zoom the plot by using the following buttons

or

Examples Creating a Circular Map with Legend

The following example creates a circular map of five different features
mapped on three levels. It also uses outputs from the featuresmap
function as inputs to the legend function to add a legend to the map.

GBStructure = getgenbank('J01415');
[Handles, OutFeatList] = featuresmap(GBStructure, ...

{'CDS','D_loop','mRNA','tRNA','rRNA'}, [1 2 2 2 3])
legend(Handles, OutFeatList, 'interpreter', 'none', ...

'location','bestoutside')
title('Human Mitochondrion, Complete Genome')

Creating a Linear Map with Sequence Position Labels and
Changed Font Size

The following example creates a linear map showing only the gene
feature. It changes the font of the labels to seven points and includes
the sequence position in the labels.

herpes = getgenbank('NC_001348');
featuresmap(herpes,{'gene'},'fontsize',7,'showpositions',true)
title('Genes in Human herpesvirus 3 (strain Dumas)')

Determining Qualifiers for a Specific Feature

The following example uses the getgenbank function to create a
GenBank structure, GBStructure. It then uses the featuresparse
function to parse the features in the GenBank structure into a new

2-117

featuresmap

structure, features. It then uses the fieldnames function to return
all qualifiers for one of the features, D_loop.

GenBankStructure = getgenbank('J01415');
features = featuresparse (GenBankStructure)
features =

source: [1x1 struct]
D_loop: [1x2 struct]

rep_origin: [1x3 struct]
repeat_unit: [1x4 struct]
misc_signal: [1x1 struct]

misc_RNA: [1x1 struct]
variation: [1x17 struct]

tRNA: [1x22 struct]
rRNA: [1x2 struct]
mRNA: [1x10 struct]
CDS: [1x13 struct]

conflict: [1x1 struct]

fieldnames(features.D_loop)

ans =

'Location'
'Indices'
'note'
'citation'

See Also featuresparse, genbankread, getgenbank, seqtool

2-118

galread

Purpose Read microarray data from GenePix array list file

Syntax GALData = galread('File')

Arguments
File GenePix Array List formatted file (GAL). Enter a

filename, or enter a path and filename.

Description galread reads data from a GenePix formatted file into a MATLAB
structure.

GALData = galread('File') reads in a GenePix Array List formatted
file (File) and creates a structure (GALData) containing the following
fields:

Field

Header

BlockData

IDs

Names

The field BlockData is an N-by-3 array. The columns of this array are
the block data, the column data, and the row data respectively. For
more information on the GAL format, see

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal

For a list of supported file format versions, see

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html

GenePix is a registered trademark of Molecular Devices Corporation.

See Also Bioinformatics Toolbox functions affyread, geosoftread, gprread,
imageneread, sptread

2-119

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal
http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html

genbankread

Purpose Read data from GenBank file

Syntax GenBankData = genbankread('File')

Arguments
File GenBank formatted file (ASCII text file).

Enter a filename, a path and filename, or
a URL pointing to a file. File can also be
a MATLAB character array that contains
the text of a GenBank formatted file.

GenBankData MATLAB structure with fields
corresponding to GenBank data.

Discussion GenBankData = genbankread('File') reads in a GenBank formatted
file (File) and creates a structure (GenBankData) containing fields
corresponding to the GenBank keywords. Each separate sequence listed
in the output structure (GenBankData) is stored as a separate element
of the structure.

Examples 1 Get sequence information for a gene (HEXA), store data in a file, and
then read back into MATLAB.

getgenbank('nm_000520', 'ToFile', 'TaySachs_Gene.txt')
s = genbankread('TaySachs_Gene.txt')

s =
LocusName:"NM_000520'

LocusSequenceLength:'2255'
LocusNumberofStrands:''

LocusTopology:'linear'
LocusMoleculeType:'mRNA'

LocusGenBankDivision:'PRI'
LocusModificationDate:'23-SEP-2005'

Definition:[1x63 char]
Accession:'NM_00520'

Version:'NM_000520.2'

2-120

genbankread

GI:'13128865'
Keywords:[]
Segment:[]
Source:[1x20 char]

SourceOrganism: [4x65 char]
Reference:{1x14 cell}

Comment:[15x67 char]
Features:[77x74 char]

CDS:[1x1 struct]
Sequence:[1x2255 char]

2 Display the source organism for this sequence.

s.SourceOrganism

ans =

Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia;Eutheria; Euarchontoglires;
Primates; Catarrhini; Hominidae; Homo

See Also Bioinformatics Toolbox functions emblread, fastaread, genpeptread,
getgenbank, scfread, seqtool

2-121

geneentropyfilter

Purpose Remove genes with low entropy expression values

Syntax Mask = geneentropyfilter(Data)
[Masks, FData] = geneentropyfilter(Data)
[Mask, FData, FNames] = geneentropyfilter(Data,Names)
geneentropyfilter(..., 'PropertyName', PropertyValue,...)
geneentropyfilter(..., 'Percentile', PercentileValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each column
is the results for all genes from one experiment.

Names Cell array with the name of a gene for each row
of experimental data. Names has same number
of rows as Data with each row containing the
name or ID of the gene in the data set.

Percentile Property to specify a percentile below which gene
data is removed. Enter a value from 0 to 100.

Description Mask = geneentropyfilter(Data) identifies gene expression profiles
in Data with entropy values less than the 10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a variance greater than
the threshold have a value of 1, and those with a variance less then
the threshold are 0.

[Masks, FData] = geneentropyfilter(Data) returns a filtered
data matrix (FData). FData can also be created using FData =
Data(find(I),:).

[Mask, FData, FNames] = geneentropyfilter(Data,Names) returns
a filtered names array (FNames). You can also create FNames using
FNames = Names(I).

geneentropyfilter(..., 'PropertyName', PropertyValue,...)
defines optional properties using property name/value pairs.

2-122

geneentropyfilter

geneentropyfilter(..., 'Percentile', PercentileValue) removes
from the experimental data (Data) gene expression profiles with
entropy values less than a given percentile (PercentileValue).

References [1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an
Integrative Genomics, Cambridge, MA:MIT Press.

Examples load yeastdata
[fyeastvalues, fgenes] = geneentropyfilter(yeastvalues,genes);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
genelowvalfilter, generangefilter, genevarfilter

2-123

genelowvalfilter

Purpose Remove gene profiles with low absolute values

Syntax Mask = genelowvalfilter(Data)
[Mask, FData] = genelowvalfilter(Data)
[Mask, FData, FNames] = genelowvalfilter(Data, Names)
genelowvalfilter(..., 'PropertyName', PropertyValue,...)
genelowvalfilter(..., 'Prctile', PrctileValue)
genelowvalfilter(..., 'AbsValue', AbsValueValue)
genelowvalfilter(..., 'AnyVal', AnyValValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each column
is the results for all genes from one experiment.

Names Cell array with the same number of rows as
Data. Each row contains the name or ID of the
gene in the data set.

PrctileValue Property to specify a percentile below which
gene expression profiles are removed. Enter a
value from 0 to 100.

AbsValueValue Property to specify an absolute value below
which gene expression profiles are removed.

AnyValValue Property to select the minimum or maximum
absolute value for comparison with
AbsValueValue. If AnyValValue is true, selects
the minimum absolute value. If AnyValValue
is false, selects the maximum absolute value.
The default value is false.

Description Gene expression profile experiments have data where the absolute
values are very low. The quality of this type of data is often bad due to
large quantization errors or simply poor spot hybridization.

Mask = genelowvalfilter(Data) identifies gene expression profiles in
Data with all absolute values less than the 10th percentile.

2-124

genelowvalfilter

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with absolute expression levels
greater than the threshold have a value of 1, and those with absolute
expression levels less then the threshold are 0.

[Mask, FData] = genelowvalfilter(Data) returns a filtered data
matrix (FData). You can create FData using FData = Data(find(I),:).

[Mask, FData, FNames] = genelowvalfilter(Data, Names) returns a
filtered names array (FNames), where Names is a cell array of the names
of the genes corresponding to each row of Data. You can also create
FNames using FNames = Names(I).

genelowvalfilter(..., 'PropertyName', PropertyValue,...)
defines optional properties using property name/value pairs.

genelowvalfilter(..., 'Prctile', PrctileValue) removes from
the experimental data (Data) gene expression profiles with all absolute
values less than a specified percentile (Percentile).

genelowvalfilter(..., 'AbsValue', AbsValueValue) calculates the
maximum absolute value for each gene expression profile and removes
the profiles with maximum absolute values less than AbsValValue.

genelowvalfilter(..., 'AnyVal', AnyValValue), when AnyValValue
is true, calculates the minimum absolute value for each gene expression
profile and removes the profiles with minimum absolute values less
than AnyValValue.

References [1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an
Integrative Genomics, Cambridge, MA:MIT Press.

Examples [data, labels, I, FI] = genelowvalfilter(data,labels,'AbsValue',5);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
geneentropyfilter, generangefilter, genevarfilter

2-125

geneont

Purpose Create geneont object

Syntax GeneontObj = geneont
GeneontObj = geneont('File', 'FileValue')
GeneontObj = geneont('Live',
LiveValue)
GeneontObj = geneont('Live', LiveValue, 'ToFile',
ToFileValue)

Arguments
FileValue Filename of an OBO formatted file that is on the

MATLAB search path.

LiveValue Property to create the most up-to-date geneont object.
Enter true to create a geneont object (GeneontObj)
from the most recent version of the Gene Ontology
database. Default is false.

ToFileValue Filename to which to save the geneont object from
the Gene Ontology database.

Description GeneontObj = geneont searches for the file gene_ontology.obo in the
MATLAB Current Directory and creates a geneont object.

GeneontObj = geneont('File', 'FileValue') creates a geneont object
(GeneontObj) from an OBO formatted file that is on the MATLAB search
path.

GeneontObj = geneont('Live', LiveValue), when LiveValue is true,
creates a geneont object (GeneontObj) from the most recent version of
the Gene Ontology database, which is the file at

http://www.geneontology.org/ontology/gene_ontology.obo

Note The full Gene Ontology database may take several minutes to
download when you run this function using the Live property.

2-126

geneont

GeneontObj = geneont('Live', LiveValue, 'ToFile', ToFileValue),
when LiveValue is true, creates a geneont object (GeneontObj) from
the file at

http://www.geneontology.org/ontology/gene_ontology.obo

and saves the file to a local file (’ToFileValue’).

Method
Summary

geneont Create geneont object

getancestors (geneont) Numeric IDs for ancestors of
Gene Ontology term

getdescendants (geneont) Numeric IDs for descendants of
Gene Ontology term

getmatrix (geneont) Convert geneont object into
relationship matrix

getrelatives (geneont) Numeric IDs for relatives of Gene
Ontology term

Property
Summary Property Of Object

Type
Description

default_namespace geneont.geneont string

format_version geneont.geneont string

date geneont.geneont string

Terms geneont.geneont array that contains objects of
type geneont.term

2-127

geneont

Property Of Object
Type

Description

id geneont.term numeric value that corresponds
to the GO ID of the GO term

Tip You can use the num2goid
function to convert id to a GO
ID string.

name geneont.term string representing the name of
the GO term

ontology geneont.term string limited to ’molecular
function’, ’biological process’, or
’cellular component’

definition geneont.term string that defines the GO term

synonym geneont.term numeric array containing GO
IDs of GO terms that are
synonyms of this GO term

is_a geneont.term numeric array containing GO
IDs of GO terms that have an
“is_a” relationship with this GO
term

part_of geneont.term numeric array containing GO
IDs that of GO terms that have
a “part_of” relationship with
this GO term

obsolete geneont.term Boolean value that indicates if
the GO term is obsolete (1 or not
obsolete (0)

2-128

geneont

Examples 1 Download the Gene Ontology database from the Web into MATLAB.

GO = geneont('LIVE', true);

MATLAB creates a geneont object and displays the number of terms
in the database.

Gene Ontology object with 20005 Terms.

2 Display information about the geneont object.

get(GO)

default_namespace: 'gene_ontology'
format_version: '1.0'

date: '01:11:2005 16:51'
Terms: [20005x1 geneont.term]

3 Search for all GO terms in the geneont object that contain the string
ribosome in the property field name and create a structure of those
terms.

comparison = regexp(get(GO.Terms,'name'),'ribosome');
indices = find(~cellfun('isempty',comparison));
terms_with_ribosmome = GO.Term(indices)
23x1 struct array with fields:

id
name
ontology
definition
synonym
is_a
part_of
obsolete

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), goannotread, num2goid

2-129

geneont

• geneont object methods — getancestors, getdescendants,
getmatrix, getrelatives

2-130

generangefilter

Purpose Remove gene profiles with small profile ranges

Syntax Mask = generangefilter(Data)
[Maks, FData] = generangefilter(Data)
[Maks, FData, FNames] = generangefilter(Data,Names)
generangefilter(..., 'PropertyName', PropertyValue,...)
generangefilter(..., 'Percentile', PercentileValue)
generangefilter(..., 'AbsValue', AbsValueValue)
generangefilter(..., 'LOGPercentile', LOGPercentileValue)
generangefilter(..., 'LOGValue', LOGValueValue)

Arguments
Data Matrix where each row corresponds to the

experimental results for one gene. Each
column is the results for all genes from one
experiment.

Names Cell array with the name of a gene for each
row of experimental data. Names has same
number of rows as Data with each row
containing the name or ID of the gene in the
data set.

PercentileValue Property to specify a percentile below which
gene expression profiles are removed. Enter
a value from 0 to 100.

AbsValueValue Property to specify an absolute value below
which gene expression profiles are removed.

LOGPercentileValue Property to specify the LOG of a percentile.

LOGValueValue Property to specify the LOG of an absolute
value.

Description Mask = generangefilter(Data) calculates the range for each gene
expression profile in the experimental data (Data), and then identifies
the expression profiles with ranges less than the 10th percentile.

2-131

generangefilter

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a range greater then
the threshold have a value of 1, and those with a range less then the
threshold are 0.

[Maks, FData] = generangefilter(Data) returns a filtered
data matrix (FData). FData can also be created using FData =
Data(find(I),:).

[Maks, FData, FNames] = generangefilter(Data,Names) returns a
filtered names array (FNames), where Names is a cell array with the
names of the genes corresponding to each row in Data. You can also
create FNames using FNames = Names(I).

generangefilter(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

generangefilter(..., 'Percentile', PercentileValue) removes
from the experimental data (Data) gene expression profiles with ranges
less than a specified percentile (PercentileValue).

generangefilter(..., 'AbsValue', AbsValueValue) removes from
Data gene expression profiles with ranges less than AbsValueValue.

generangefilter(..., 'LOGPercentile', LOGPercentileValue)
filters genes with profile ranges in the lowest percent of the log range
(LOGPercentileValue).

generangefilter(..., 'LOGValue', LOGValueValue) filters genes
with profile log ranges lower than LOGValueValue.

References [1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an
Integrative Genomics, Cambridge, MA:MIT Press.

Examples load yeastdata
[mask, fyeastvalues, fgenes] = generangefilter(yeastvalues,genes);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
geneentropyfilter, genelowvalfilter, genevarfilter

2-132

geneticcode

Purpose Nucleotide codon to amino acid mapping

Syntax Map = geneticcode
geneticcode(GeneticCode)

Arguments
GeneticCode Enter a code number or code name from the

table Genetic Code on page 2-133 below. If you
use a code name, you can truncate the name to
the first two characters of the name.

Genetic Code

Code Number Code Name Code Number Code Name

1 Standard 12 Alternative
Yeast Nuclear

2 Vertebrate
Mitochondrial

13 Ascidian
Mitochondrial

3 Yeast
Mitochondrial

14 Flatworm
Mitochondrial

4 Mold,
Protozoan,
Coelenterate
Mitochondrial,
and
Mycoplasma
/Spiroplasma

15 Blepharisma
Nuclear

5 Invertebrate
Mitochondrial

16 Chlorophycean
Mitochondrial

6 Ciliate,
Dasycladacean,
and Hexamita
Nuclear

21 Trematode
Mitochondrial

2-133

geneticcode

Code Number Code Name Code Number Code Name

9 Echinoderm
Mitochondrial

22 Scenedesmus
Obliquus
Mitochondrial

10 Euplotid
Nuclear

23 Thraustochytrium
Mitochondrial

11 Bacterial and
Plant Plastid

Description Map = geneticcode returns a structure with a mapping of nucleotide
codons to amino acids for the standard genetic code.

geneticcode(GeneticCode) returns a structure of the mapping
for alternate genetic codes, where GeneticCode is either the
transl_table (code) number from the NCBI Genetics Web page
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c)
or one of the supported names in the genetic code table above.

Examples List the mapping of nucleotide codons to amino acids for a specific
genetic code.

wormcode = geneticcode('Flatworm Mitochondrial');

See Also Bioinformatics Toolbox functions aa2nt, aminolookup, baselookup,
codonbias, dnds, dndsml, nt2aa, revgeneticcode, seqshoworfs,
seqtool

2-134

genevarfilter

Purpose Filter genes with small profile variance

Syntax Mask = genevarfilter(Data)
[Mask, FData] = genevarfilter(Data)
[Mask, FData, FNames] = genevarfilter(Data,Names)
genevarfilter(..., 'PropertyName', PropertyValue,...)
genevarfilter(..., 'Percentile', PercentileValue)
genevarfilter(..., 'AbsValue', AbsValValue)

Arguments
Data Matrix where each row corresponds to a gene. The first

column is the names of the genes, and each additional
column is the results from an experiment.

Names Cell array with the name of a gene for each row of
experimental data. Names has same number of rows as
Data with each row containing the name or ID of the
gene in the data set.

Percentile Property to specify a percentile below which gene
expression profiles are removed. Enter a value from
0 to 100.

AbsValue Property to specify an absolute value below which gene
expression profiles are removed.

Description Gene profiling experiments have genes that exhibit little variation in
the profile and are generally not of interest in the experiment. These
genes are commonly removed from the data.

Mask = genevarfilter(Data) calculates the variance for each gene
expression profile in Data and then identifies the expression profiles
with a variance less than the 10th percentile.

Mask is a logical vector with one element for each row in Data. The
elements of Mask corresponding to rows with a variance greater than
the threshold have a value of 1, and those with a variance less than
the threshold are 0.

2-135

genevarfilter

[Mask, FData] = genevarfilter(Data) returns the filtered data matrix
(FData). You can also create FData using FData = Data(find(I),:).

[Mask, FData, FNames] = genevarfilter(Data,Names) returns a
filtered names array (FNames). Names is a cell array of the names of the
genes corresponding to each row of Data. FNames can also be created
using FNames = Names(I).

genevarfilter(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

genevarfilter(..., 'Percentile', PercentileValue) removes from
the experimental data (Data) gene expression profiles with a variance
less than the percentile (Percentile).

genevarfilter(..., 'AbsValue', AbsValValue) removes from Data
gene expression profiles with a variance less than AbsValue.

References [1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an
Integrative Genomics, Cambridge, MA:MIT Press.

Examples load yeastdata
[fyeastvalues, fgenes] = genevarfilter(yeastvalues,genes);

See Also Bioinformatics Toolbox functions exprprofrange, exprprofvar,
generangefilter, geneentropyfilter, genelowvalfilter

2-136

genpeptread

Purpose Read data from GenPept file

Syntax GenPeptData = genpeptread('File')

Arguments
File GenPept formatted file (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to a
file. File can also be a MATLAB character array that
contains the text of a GenPept file.

Description genpeptread reads data from a GenPept formatted file into a MATLAB
structure.

Note NCBI has recently changed the name of their protein search
engine from GenPept to Entrez Protein. However, the function names
in the Bioinformatics Toolbox (getgenpept, genpeptread) are unchanged
representing the still-used GenPept report format.

GenPeptData = genpeptread('File') reads in the GenPept formatted
sequence from File and creates a structure GenPeptData, containing
fields corresponding to the GenPept keywords. Each separate sequence
listed in File is stored as a separate element of the structure.
GenPeptDATA contains these fields:

Field

LocusName

LocusSequenceLength

LocusMoleculeType

LocusGenBankDivision

LocusModificationDate

Definition

2-137

genpeptread

Field

Accession

PID

Version

GI

DBSource

Keywords

Source

SourceDatabase

SourceOrganism

Reference.Number

Reference.Authors

Reference.Title

Reference.Journal

Reference.MedLine

Reference.PubMed

Reference.Remark

Comment

Features

Weight

Length

Sequence

Examples Get sequence information for the protein coded by the gene HEXA, save
to a file, and then read back into MATLAB.

getgenpept('p06865', 'ToFile', 'TaySachs_Protein.txt')
genpeptread('TaySachs_Protein.txt')

2-138

genpeptread

See Also Bioinformatics Toolbox functions fastaread, genbankread, getgenpept,
pdbread, seqtool

2-139

geosoftread

Purpose Read data from Gene Expression Omnibus (GEO) SOFT Sample (GSM)
file

Syntax GEOSOFTData = geosoftread('File')

Arguments
File Gene Expression Omnibus (GEO) formatted file (ASCII

text file). Enter a filename, a path and filename, or a
URL pointing to a file. File can also be a MATLAB
character array that contains the text of a GEO file.

Description GEOSOFTData = geosoftread('File') reads data from a Gene
Expression Omnibus (GEO) SOFT formatted Sample (GSM) file (File),
and creates a MATLAB structure (GEOSOFTdata) with the following
fields:

Fields

Scope

Accession

Header

ColumnDescriptions

ColumnNames

Data

Fields correspond to the GenBank keywords. Each separate entry listed
in File is stored as a separate element of the structure.

Note Currently, the Bioinformatics Toolbox supports only Sample
(GSM) records.

2-140

geosoftread

Examples Get data from the GEO Web site and save it to a file.

geodata = getgeodata('GSM3258','ToFile','GSM3258.txt');

Use geosoftread to access a local copy from disk instead of accessing
it from the GEO Web site.

geodata = geosoftread('GSM3258.txt')

See Also Bioinformatics Toolbox functions galread, getgeodata, gprread,
sptread

2-141

get (phytree)

Purpose Information about phylogenetic tree object

Syntax [Value1, Value2,...] = get(Tree, ’Property1’,’Property2’,...)
get(Tree)
V = get(Tree)

Arguments
Tree Phytree object created with the function

phytree.

Name Property name for a phytree object.

Description [Value1, Value2,...] = get(Tree, ’Property1’,’Property2’,...)
returns the specified properties from a phytree object (Tree).

Properties for a phytree object are listed in the following table.

Property Description

NumLeaves Number of leaves

NumBranches Number of branches

NumNodes Number of nodes (NumLeaves + Numbranches)

Pointers Branch to leaf/branch connectivity list

Distances Edge length for every leaf/branch

LeafNames Names of the leaves

BranchNames Names of the branches

NodeNames Names of all the nodes

get(Tree) displays all property names and their current values for a
phytree object (Tree).

V = get(Tree) returns a structure where each field name is the name
of a property of a phytree object (Tree) and each field contains the value
of that property.

2-142

get (phytree)

Examples 1 Read in a phylogenetic tree from a file.

tr = phytreeread('pf00002.tree')

2 Get the names of the leafs.

protein_names = get(tr,'LeafNames')

protein_names =

'BAI2_HUMAN/917-1197'
'BAI1_HUMAN/944-1191'
'O00406/622-883'
...

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread

• phytree object methods — getbyname, select

2-143

getancestors (biograph)

Purpose Find ancestors in biograph object

Syntax Nodes = getancestors(BiographNode)
Nodes = getancestors(BiographNode,
NumGenerations)

Arguments
BiographNode Node in a biograph object.

NumGenerations Number of generations. Enter a positive
integer.

Description Nodes = getancestors(BiographNode) returns a node (BiographNode)
and all of its direct ancestors.

Nodes = getancestors(BiographNode, NumGenerations) finds the node
(BiographNode) and its direct ancestors up to a specified number of
generations (NumGenerations).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Find one generation of ancestors for node 2.

ancNodes = getancestors(bg.nodes(2));
set(ancNodes,'Color',[1 .7 .7]);
bg.view;

2-144

getancestors (biograph)

3 Find two generations of ancestors for node 2.

ancNodes = getancestors(bg.nodes(2),2);
set(ancNodes,'Color',[.7 1 .7]);
bg.view;

2-145

getancestors (biograph)

See Also Bioinformatics Toolbox

• function — biograph (object constructor)

• biograph object methods — dolayout, getancestors,
getdescendants, getedgesbynodeid, getnodesbyid, getrelatives,
view

MATLAB

• functions — get, set

2-146

getancestors (geneont)

Purpose Numeric IDs for ancestors of Gene Ontology term

Syntax AncestorIDs = getancestors(GeneontObj, ID)
AncestorIDs = getancestors(..., 'Height', HeightValue, ...)

Description AncestorIDs = getancestors(GeneontObj, ID) returns the numeric
IDs (AncestorIDs) for the ancestors of a term (ID) including the ID for
the term. ID is a nonnegative integer or a numeric vector with a set
of IDs.

AncestorIDs = getancestors(..., 'PropertyName',
PropertyValue,...) defines optional properties using property
name/value pairs.

AncestorIDs = getancestors(..., 'Height', HeightValue, ...)
searches up through a specified number of levels (HeightValue) in the
Gene Ontology database. HeightValue is a positive integer. Default
is Inf.

Examples 1 Download the Gene Ontology database from the Web into MATLAB.

GO = geneont('LIVE', true);

MATLAB creates a geneont object and displays the number of terms
in the database.

Gene Ontology object with 20005 Terms.

2 Get the ancestors for a Gene Ontology term.

ancestors = getancestors(GO,46680)

ancestors =
8150
9628
9636

17085
42221

2-147

getancestors (geneont)

46680
50896

3 Create a sub Gene Ontology.

subontology = GO(ancestors)

Gene Ontology object with 7 Terms.

4 View relationships using the biograph functions.

[cm acc rels] = getmatrix(subontology);
BG = biograph(cm, get(subontology.Terms, 'name'))
view(BG)

2-148

getancestors (geneont)

2-149

getancestors (geneont)

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), goannotread, num2goid

• geneont object methods — getdescendants, getmatrix,
getrelatives

2-150

getblast

Purpose BLAST report from NCBI Web site

Syntax Data = getblast(RID)
getblast(..., 'PropertyName', PropertyValue,...)
getblast(..., 'Descriptions', DescriptionsValue)
getblast(..., 'Alignments', AlignmentsValue)
getblast(..., 'ToFile', ToFileValue)
getblast(..., 'FileFormat', FileFormatValue)
getblast(..., 'WaitTilReady', WaitTilReadyValue)

Arguments
RID BLAST Request ID (RID) from the function

blastncbi.

DescriptionsValue Property to specify the number of descriptions
in a report.

AlignmentsValue Property to select the number of alignments
in a report. Enter values from 1 to 100. The
default value is 50.

ToFileValue Property to specify a filename for saving
report data.

FileFormatValue Property to select the format of the file named
in ToFileValue. Enter either 'TEXT' or
’HTML’.The default value is 'TEXT'.

Description BLAST (Basic Local Alignment Search Tool) reports offer a fast and
powerful comparative analysis of interesting protein and nucleotide
sequences against known structures in existing online databases.
getblast parses NCBI BLAST reports, including BLASTN, BLASTP,
BLASTX, TBLASTN, TBLASTX, and psi-BLAST.

2-151

getblast

Data = getblast(RID) reads a BLAST Request ID (RID) and returns
the report data in a structure (Data). The NCBI Request ID (RID) must
be a recently generated report because NCBI purges reports after 24
hours.

getblast(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

getblast(..., 'Descriptions', DescriptionsValue) includes the
specified number of descriptions (DescriptionsValue) in the report.

getblast(..., 'Alignments', AlignmentsValue) includes the
specified number of alignments in the report.

getblast(..., 'ToFile', ToFileValue) saves the data returned from
the NCBI BLAST report to a file (ToFileValue). The default format for
the file is text, but you can specify HTML with the property FileFormat.

getblast(..., 'FileFormat', FileFormatValue) returns the report
in the specified format (FileFormatValue).

getblast(..., 'WaitTilReady', WaitTilReadyValue) pauses
MATLAB and waits a specified time for a report from the NCBI
Web site. If the report is still not available after the wait time
(WaitTilReadyValue), getblast returns an error message. The default
behavior is to not wait for a report.

For more information about reading and interpreting BLAST reports,
see

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html

Example 1 Run a BLAST search with an NCBI accession number.

RID = blastncbi('AAA59174','blastp','expect',1e-10)

2 Pass the RID to GETBLAST to parse the report, load it into a
MATLAB structure, and save a copy as a text file.

report = getblast(RID,'TOFILE','Report.txt')

2-152

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html

getblast

See Also Bioinformatics Toolbox functions blastncbi, blastread

2-153

getbyname (phytree)

Purpose Branches and leaves from phytree object

Syntax S = getbyname(Tree, Expression)
S = getbyname(Tree, String,
'Exact', true)

Arguments
Tree Phytree object created with the function phytree.

Expression Regular expression. When Expression is a cell
array of strings, getbyname returns a matrix
where every column corresponds to every query
in Expression.For information about the symbols
that you can use in a matching regular expression,
see the MATLAB function regexp.

String Char string or cell array of char strings.

Description S = getbyname(Tree, Expression) returns a logical vector (S) of size
NumNodes-by-1 with the node names of a phylogenetic tree (Tree) that
match the regular expression (Expression) regardless of letter case.

S = getbyname(Tree, String, 'Exact', true) looks for exact string
matches and ignores case. When String is a cell array of char strings,
getbyname returns a vector with indices.

Examples 1 Load a phylogenetic tree created from a protein family.

tr = phytreeread('pf00002.tree');

2 Select all the ’mouse’ and ’human’ proteins.

sel = getbyname(tr,{'mouse','human'});
view(tr,any(sel,2));

See Also Bioinformatics Toolbox

• function — phytree (object constructor)

2-154

getbyname (phytree)

• phytree object methods — get, prune, select

2-155

getcanonical (phytree)

Purpose Calculate canonical form of phylogenetic tree

Syntax Pointers = getcanonical(Tree)
[Pointers, Distances, Names] = getcanonical(Tree)

Arguments
Tree Phytree object created with the function

phytree.

Description Pointers = getcanonical(Tree) returns the pointers for the canonical
form of a phylogenetic tree (Tree). In a canonical tree the leaves are
ordered alphabetically and the branches are ordered first by their width
and then alphabetically by their first element. A canonical tree is
isomorphic to all the trees with the same skeleton independently of the
order of their leaves and branches.

[Pointers, Distances, Names] = getcanonical(Tree) returns, in
addition to the pointers described above, the reordered distances
(Distances) and node names (Names).

Examples 1 Create two phylogenetic trees with the same skeleton but slightly
different distances.

b = [1 2; 3 4; 5 6; 7 8;9 10];
tr_1 = phytree(b,[.1 .2 .3 .3 .4]');
tr_2 = phytree(b,[.2 .1 .2 .3 .4]');

2 Plot the trees.

plot(tr_1)
plot(tr_2)

3 Check whether the trees have an isomorphic construction.

isequal(getcanonical(tr_1),getcanonical(tr_2))

2-156

getcanonical (phytree)

ans =
1

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread

• phytree object methods — getbyname, select, subtree

2-157

getdescendants (biograph)

Purpose Find descendants in biograph object

Syntax Nodes = getdescendants(BiographNode)
Nodes = getdescendants(BiographNode,NumGenerations)

Arguments
BiographNode Node in a biograph object.

NumGenerations Number of generations. Enter a positive integer.

Description Nodes = getdescendants(BiographNode) finds a given node
(BiographNode) all of its direct descendants.

Nodes = getdescendants(BiographNode,NumGenerations) finds the
node (BiographNode) and all of its direct descendants up to a specified
number of generations (NumGenerations).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Find one generation of descendants for node 4.

desNodes = getdescendants(bg.nodes(4));
set(desNodes,'Color',[1 .7 .7]);
bg.view;

2-158

getdescendants (biograph)

3 Find two generations of descendants for node 4.

desNodes = getdescendants(bg.nodes(4),2);
set(desNodes,'Color',[.7 1 .7]);
bg.view;

2-159

getdescendants (biograph)

See Also Bioinformatics Toolbox

• function — biograph (object constructor)

• biograph object methods — dolayout, getancestors,
getdescendants, getedgesbynodeid, getnodesbyid, getrelatives,
view

MATLAB

• functions — get, set

2-160

getdescendants (geneont)

Purpose Numeric IDs for descendants of Gene Ontology term

Syntax DescendantIDs = getdescendants(GeneontObj, ID)
DescendantIDs = getdescendants(..., 'Depth', DepthValue,...)

Description DescendantIDs = getdescendants(GeneontObj, ID)returns the
numeric IDs (DescendantIDs) for the descendants of a term (ID)
including the ID for the term. ID is a nonnegative integer or a numeric
vector with a set of IDs.

DescendantIDs = getdescendants(..., 'PropertyName',
PropertyValue,...) defines optional properties using property
name/value pairs.

DescendantIDs = getdescendants(..., 'Depth', DepthValue,...)
searches down through a specified number of levels (DepthValue) in the
Gene Ontology. DepthValue is a positive integer. Default is Inf.

Examples 1 Download the Gene Ontology database from the Web into MATLAB.

GO = geneont('LIVE', true);

MATLAB creates a geneont object and displays the number of terms
in the database.

Gene Ontology object with 20005 Terms.

2 Get the ancestors for a Gene Ontology term.

descendants = getdescendants(GO,5622, 'Depth', 5)

3 Create a sub Gene Ontology.

subontology = GO(descendants)

Gene Ontology object with 1071 Terms.

2-161

getdescendants (geneont)

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), goannotread, num2goid

• geneont object methods — getancestors, getmatrix, getrelatives

2-162

getedgesbynodeid (biograph)

Purpose Handles to edges in biograph object

Syntax Edges = getedgesbynodeid(BGobj,SourceIDs,SinkIDs)

Arguments
BGobj Biograph object.

SourceIDs,
SinkIDs

Enter a cell string, or an empty cell array (gets
all edges).

Description Edges = getedgesbynodeid(BGobj,SourceIDs,SinkIDs) gets the edge
handles that connect the specified source nodes (SourceIDs) to the
specified sink nodes (SinkIDs).

Example 1 Create a biograph object for the Hominidae family.

species = {'Homosapiens','Pan','Gorilla','Pongo','Baboon',...
'Macaca','Gibbon'};

cm = magic(7)>25 & 1-eye(7);
bg = biograph(cm, species);

2 Find all the edges that connect to the Homosapiens node.

EdgesIn = getedgesbynodeid(bg,[],'Homo');
EdgesOut = getedgesbynodeid(bg,'Homo');
set(EdgesIn,'LineColor',[0 1 0]);
set(EdgesOut,'LineColor',[1 0 0]);
bg.view;

3 Find all edges that connect members of the Cercopithecidae family to
members of the Hominidae family.

Cercopithecidae = {'Macaca','Baboon'};
Hominidae = {'Homo','Pan','Gorilla','Pongo'};
edgesSel = getedgesbynodeid(bg,Cercopithecidae,Hominidae);
set(bg.edges,'LineColor',[.5 .5 .5]);
set(edgesSel,'LineColor',[0 0 1]);

2-163

getedgesbynodeid (biograph)

bg.view;

See Also Bioinformatics Toolbox

• function — biograph (object constructor)

• biograph object methods — dolayout, getancestors,
getdescendants, getedgesbynodeid, getnodesbyid, getrelatives,
view

MATLAB

• functions — get, set

2-164

getembl

Purpose Sequence information from EMBL database

Syntax Data = getembl('AccessionNumber)
getembl(..., 'PropertyName', PropertyValue,...)
getembl(..., 'ToFile', ToFileValue)
getembl(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter a

unique combination of letters and numbers.

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

SequenceOnlyValue Property to control getting a sequence without
the metadata. Enter either true or false
(default).

Description getembl retrieves information from the European Molecular Biology
Laboratory (EMBL) database for nucleotide sequences. This database is
maintained by the European Bioinformatics Institute (EBI). For more
details about the EMBL-Bank database, see

http://www.ebi.ac.uk/embl/Documentation/index.html

Data = getembl('AccessionNumber) searches for the accession number
in the EMBL database (http://www.ebi.ac.uk/embl) and returns a
MATLAB structure containing the following fields:

Field

Comments

Identification

Accession

2-165

getembl

Field

SequenceVersion

DateCreated

DateUpdated

Description

Keyword

OrganismSpecies

OrganismClassification

Organelle

Reference

DatabaseCrossReference

Feature

BaseCount

Sequence

getembl(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

getembl(..., 'ToFile', ToFileValue) returns a structure containing
information about the sequence and saves the information in a file
using an EMBL data format. If you do not give a location or path to the
file, the file is stored in the MATLAB current directory. Read an EMBL
formatted file back into MATLAB using the function emblread.

getembl(..., 'SequenceOnly', SequenceOnlyValue) , if
SequenceOnlyValue is true, returns the sequence information without
the metadata.

Examples Retrieve data for the rat liver apolipoprotein A-I.

emblout = getembl('X00558')

2-166

getembl

Retrieve data for the rat liver apolipoprotein and save in the file
rat_protein. If a filename is given without a path, the file is stored in
the current directory.

Seq = getembl('X00558','ToFile','c:\project\rat_protein.txt')

Retrieve only the sequence for the rat liver apolipoprotein.

Seq = getembl('X00558','SequenceOnly',true)

See Also Bioinformatics Toolbox functions emblread, getgenbank, getgenpept,
getpdb, seqtool

2-167

getgenbank

Purpose Sequence information from GenBank database

Syntax Data = getgenbank('AccessionNumber')
getgenbank('AccessionNumber')
getgenbank(..., 'PropertyName', PropertyValue,...)
getgenbank(..., 'ToFile', ToFileValue)
getgenbank(..., 'FileFormat', FileFormatValue)
getgenbank(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a unique combination of letters and numbers.

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

FileFormatValue Property to select the format for the file
specified with the property ToFileValue. Enter
either 'GenBank' or 'FASTA'.

SequenceOnlyValue Property to control getting the sequence only.
Enter either true or false.

Description getgenbank retrieves nucleotide and amino acid sequence information
from the GenBank database. This database is maintained by the
National Center for Biotechnology Information (NCBI). For more details
about the GenBank database, see

http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenbank('AccessionNumber') searches for the accession
number in the GenBank database and returns a MATLAB structure
containing information for the sequence. If an error occurs while
retrieving the GenBank formatted information, then an attempt is
make to retrieve the FASTA formatted data.

2-168

getgenbank

getgenbank('AccessionNumber') displays information in the MATLAB
Command Window without returning data to a variable. The displayed
information includes hyperlinks to the URLS for searching and
retrieving data.

getgenbank(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getgenbank(..., 'ToFile', ToFileValue) saves the data returned
from GenBank in a file. If you do not give a location or path to the file,
the file is stored in the MATLAB current directory. Read a GenBank
formatted file back into MATLAB using the function genbankread.

getgenbank(..., 'FileFormat', FileFormatValue) returns the
sequence in the specified format (FileFormatValue).

getgenbank(..., 'SequenceOnly', SequenceOnlyValue) when
SequenceOnly is true, returns only the sequence as a character array.
When the properties SequenceOnly and ToFile are used together, the
output file is in the FASTA format.

Examples Retrieve the sequence from chromosome 19 that codes for the human
insulin receptor and store it in a structure.

1 In the MATLAB Command Window, type

S = getgenbank('M10051')

S =
LocusName: 'HUMINSR'

LocusSequenceLength: '4723'
LocusNumberofStrands: ''

LocusTopology: 'linear'
LocusMoleculeType: 'mRNA'

LocusGenBankDivision: 'PRI'
LocusModificationDate: '06-JAN-1995'

Definition: 'Human insulin receptor mRNA, complete cd
Accession: 'M10051'

Version: 'M10051.1'

2-169

getgenbank

GI: '186439'
Keywords: 'insulin receptor; tyrosine kinase.'
Segment: []
Source: 'Homo sapiens (human)'

SourceOrganism: [3x65 char]
Reference: {[1x1 struct]}

Comment: [14x67 char]
Features: [51x74 char]

CDS: [139 4287]
Sequence: [1x4723 char]

SearchURL: [1x105 char]
RetrieveURL: [1x95 char]

See Also Bioinformatics Toolbox functions genbankread, getembl, getgenpept,
getpdb,seqtool

2-170

getgenpept

Purpose Sequence information from GenPept database

Syntax Data = getgenpept('AccessionNumber')
getgenpept(...)
getgenpept(..., 'PropertyName', PropertyValue,...)
getgenpept(..., 'ToFile', ToFileValue)
getgenpept(..., 'FileFormat', FileFormatValue)
getgenpept(..., 'SequenceOnly', SequenceOnlyValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a combination of letters and numbers.

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

FileFormatValue Property to select the format for the file
specified with the property ToFileValue.
Enter either 'GenBank' or 'FASTA'.

SequenceOnlyValue Property to control getting the sequence
without metadata. Enter either true or false.

Description getgenpept retrieves a protein (amino acid) sequence and sequence
information from the database GenPept. This database is a translation
of the nucleotide sequences in GenBank and is maintained by the
National Center for Biotechnology Information (NCBI).

Note NCBI has recently changed the name of their protein search
engine from GenPept to Entrez Protein. However, the function names
in the Bioinformatics Toolbox (getgenpept, genpeptread) are unchanged
representing the still-used GenPept report format.

For more details about the GenBank database, see

2-171

getgenpept

http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenpept('AccessionNumber') searches for the accession
number in the GenPept database and returns a MATLAB structure
containing for the sequence. If an error occurs while retrieving the
GenBank formatted information, then an attempt is make to retrieve
the FASTA formatted data.

getgenpept(...) displays the information to the screen without
returning data to a variable. The displayed information includes
hyperlinks to the URLs used to search for and retrieve the data.

getgenpept(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getgenpept(..., 'ToFile', ToFileValue) saves the information in
a file. If you do not give a location or path to the file, the file is stored
in the MATLAB current directory. Read a GenPept formatted file back
into MATLAB using the function genpeptread

getgenpept(..., 'FileFormat', FileFormatValue) returns the
sequence in the specified format FileFormatValue.

getgenpept(..., 'SequenceOnly', SequenceOnlyValue) returns only
the sequence information without the metadata if SequenceOnlyValue
is true. When the properties SequenceOnly and ToFile are used
together, the output file is in the FASTA format.

Examples Retrieve the sequence for the human insulin receptor and store it in
structure Seq.

Seq = getgenpept('AAA59174')

See Also Bioinformatics Toolbox functions genpeptread, getembl, getgenbank,
getpdb

2-172

getgeodata

Purpose Retrieve Gene Expression Omnibus (GEO) Sample (GSM) data

Syntax Data = getgeodata('AccessionNumber')
getgeodata(..., 'PropertyName', PropertyValue,...)
getgeodata(..., 'ToFile', ToFileValue)

Arguments
AccessionNumber Unique identifier for a sequence record. Enter

a combination of letters and numbers.

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename, or a
path and filename supported by your system
(ASCII text file).

Description Data = getgeodata('AccessionNumber') searches for the accession
number in the Gene Expression Omnibus database and returns a
MATLAB structure containing the following fields:

Field

Scope

Accession

Header

ColumnDescriptions

ColumnNames

Data

getgeodata(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getgeodata(..., 'ToFile', ToFileValue) saves the data returned
from the database to a file. Read a GenPept formatted file back into
MATLAB using the function gensoftread.

2-173

getgeodata

Note Currently, the Bioinformatics Toolbox supports only Sample
(GSM) records.

For more information, see

http://www.ncbi.nlm.nih.gov/About/disclaimer.html

Examples geoStruct = getgeodata('GSM1768')

See Also Bioinformatics Toolbox functions geosoftread, getgenbank,
getgenpept

2-174

http://www.ncbi.nlm.nih.gov/About/disclaimer.html

gethmmalignment

Purpose Multiple aligned sequences from PFAM database

Syntax AlignData = gethmmalignment('PFAMKey')
gethmmalignment(..., 'PropertyName', PropertyValue,...)
gethmmalignment(..., 'ToFile', ToFileValue)
gethmmalignment(..., 'Type', TypeValue)

‘

Arguments
PFAMKey Unique identifier for a sequence record. Enter a unique

combination of letters and numbers.

ToFileValue Property to specify the location and filename for saving
data. Enter either a filename, or a path and filename
supported by your system (ASCII text file).

TypeValue Property to select the set of alignments returned.
Enter either 'seed' or 'full'.

Description AlignData = gethmmalignment('PFAMKey') retrieves multiple aligned
sequences from a profile hidden Markov model stored in the PFAM
database and returns a MATLAB structure containing the following
fields:

Field

Header

Sequence

gethmmalignment(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

gethmmalignment(..., 'ToFile', ToFileValue) saves the data
returned from the PFAM database to a file. Read a FASTA formatted
file with PFAM data back into MATLAB using the function fastaread.

2-175

gethmmalignment

gethmmalignment(..., 'Type', TypeValue), if TypeValue equals
'seed', returns only the alignments used to generate the HMM model.
If TypeValue equals 'full' (default), returns all alignments that fit
the model.

Examples Retrieve a multiple alignment of the sequences used to train the HMM
profile model for global alignment to the 7 transmembrane receptor
protein in the secretin family (PFAMKey = PF00002).

pfamalign = gethmmalignment(2,'Type','seed')

or

pfamalign = gethmmalignment('PF00002','Type','seed')

See Also Bioinformatics Toolbox function fastaread, gethmmprof, gethmmtree,
pfamhmmread, multialignread

2-176

gethmmprof

Purpose Profile Hidden Markov Models (HMM) from PFAM database

Syntax Model = gethmmprof(FamilyNumber)
Model = gethmmprof('FamilyName')
Model = gethmmprof('AccessionNumber')
gethmmprof(..., 'PropertyName', PropertyValue,...)
gethmmprof(..., 'ToFile', ToFileValue)
gethmmprof(..., 'Mode', ModeValue)
gethmmprof(..., 'Mirror', MirrorValue)

Arguments
FamilyNumber PFAM family number. For example, to retrieve

the profile HMM model for the protein family
PF0002, enter 2.

FamilyName PFAM family name. For example, enter '7tm_2'.

AccessionNumber PFAM family accession number. Enter a
character string with a version number appended
to an accession number. For example, enter
'PF00002.14'. Because of changing version
numbers, this is not the recommend method for
getting information from the database.

ToFileValue Property to specify the location and filename for
saving data. Enter either a filename or a path
and filename supported by your computer system
(ASCII text file).

ModeValue Property to select returning the global or local
alignment mode. Enter either 'ls'(default) for
the global alignment mode or 'fs' for the local
alignment mode.

MirrorValue Property to select a Web database. Enter
either'Sanger' (default) or 'WUSTL'.

Description Model = gethmmprof(FamilyNumber) uses a numeric value (Number)
to determine the PFAM accession number, queries the database, and

2-177

gethmmprof

then retrieves the profile HMM model information into a structure with
the following fields:

Field

Name

PfamAccessionNumber

ModelDescription

ModelLength

Alphabet

MatchEmission

InsertEmission

NullEmission

BeginX

MatchX

InsertX

DeleteX

FlankingInsertX

Model = gethmmprof('FamilyName') searches the PFAM database for a
protein family name (FamilyName) and retrieves the information into
a structure.

Model = gethmmprof('AccessionNumber')retrieves the information
and the accession number into a structure. This is the most efficient
method to query a database. However, you should be aware that
the accession number can be different with different databases. For
example, the Sanger database adds a version number to the accession
number (PF00002.14)

gethmmprof(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

2-178

gethmmprof

gethmmprof(..., 'ToFile', ToFileValue) saves data returned from
the PFAM database in a file (ToFileValue). Read an hmmprof formatted
file back into MATLAB using the function pfamhmmread.

gethmmprof(..., 'Mode', ModeValue) selects either the global
alignment model or the local alignment model.

gethmmprof(..., 'Mirror', MirrorValue) selects a specific web
database. You can reach other mirror sites by passing the complete URL
to the function pfamhmmread. Note: these mirror sites are maintained
separately and may have slight variations.

For more information about the PFAM database, see

http://www.sanger.ac.uk/Software/Pfam/
http://pfam.wustl.edu/

Examples To retrieve an HMM profile model for global alignment to the
7-transmembrane receptor protein in the secretin family, enter one
of the following

hmmmodel = gethmmprof(2)

hmmmodel = gethmmprof('7tm_2)

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
pfamhmmread, showhmmprof, gethmmalignment

2-179

gethmmtree

Purpose Phylogenetic tree data from PFAM database

Syntax Tree = gethmmtree(AccessionNumber)
gethmmtree(..., 'PropertyName', PropertyValue,...)
gethmmtree(..., 'ToFile', ToFileValue)
gethmmtree(..., 'Type', TypeValue)

Arguments
AccessionNumber Accession number in the PFAM database.

ToFileValue Property to specify the location and filename for
saving data. Enter either a filename or a path
and filename supported by your system (ASCII
text file).

TypeValue Property to control which alignments are included
in the tree. Enter either 'seed' or 'full'
(default).

Description Tree = gethmmtree(AccessionNumber) searches for the PFAM family
accession number in the PFAM database and returns an object (Tree)
containing a phylogenetic tree representative of the protein family.

gethmmtree(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

gethmmtree(..., 'ToFile', ToFileValue) saves the data returned
from the PFAM database in the file ToFileValue.

gethmmtree(..., 'Type', TypeValue) , when TypeValue is 'seed',
returns a tree with only the alignments used to generate the HMM
model. When TypeValue is 'full', returns a tree with all of the
alignments that match the model.

Examples Retrieve a phylogenetic tree built from the multiple aligned sequences
used to train the HMM profile model for global alignment. The PFAM
accession number PF00002 is for the 7-transmembrane receptor protein
in the secretin family.

2-180

gethmmtree

tree = gethmmtree(2, 'type', 'seed')
tree = gethmmtree('PF00002', 'type', 'seed')

See Also Bioinformatics Toolbox functions gethmmalignment, phytreeread

2-181

getmatrix (geneont)

Purpose Convert geneont object into relationship matrix

Syntax [Matrix, ID, Relationship] = getmatrix(GeneontObj)

Arguments
GeneontObj

Description [Matrix, ID, Relationship] = getmatrix(GeneontObj) converts a
geneont object (GeneontObj) into a matrix of relationship values. ID is a
list of Gene Ontology IDs that correspond to the rows and columns of
Matrix. The values in the matrix are indices of the relationship types in
Relationship (usually 1 for 'is_a' and 2 for 'part_of').

Examples [MATRIX ID REL] = getmatrix(GO);

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), goannotread, num2goid

• geneont object methods — getancestors, getdescendants,
getrelatives

2-182

getnewickstr (phytree)

Purpose Create Newick-formatted string

Syntax String = getnewickstr(Tree)
getnewickstr(..., 'PropertyName', PropertyValue,...)
getnewickstr(..., 'Distances', DistancesValue)
getnewickstr(..., 'BranchNames', BranchNamesValue)

Arguments
Tree Phytree object created with the function

phytree.

DistancesValue Property to control including or excluding
distances in the output. Enter either true
(include distances) or false (exclude distances).
Default is true.

BranchNamesValue Property to control including or excluding
branch names in the output. Enter either
true (include branch names) or false (exclude
branch names). Default is false.

Description String = getnewickstr(Tree) returns the Newick formatted string of
a phylogenetic tree object (Tree).

getnewickstr(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getnewickstr(..., 'Distances', DistancesValue), when
DistancesValue is false, excludes the distances from the output.

getnewickstr(..., 'BranchNames', BranchNamesValue), when
BranchNamesValue is true, includes the branch names in the output.

References Information about the Newick tree format.

http://evolution.genetics.washington.edu/phylip/newicktree.html

2-183

http://evolution.genetics.washington.edu/phylip/newicktree.html

getnewickstr (phytree)

Examples 1 Create some random sequences.

seqs = int2nt(ceil(rand(10)*4));

2 Calculate pairwise distances.

dist = seqpdist(seqs,'alpha','nt');

3 Construct a phylogenetic tree.

tree = seqlinkage(dist);

4 Get the Newick string.

str = getnewickstr(tree)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread,
phytreetool, phytreewrite, seqlinkage

• phytree object methods — get, getbyname, getcanonical

2-184

getnodesbyid (biograph)

Purpose Handles to nodes

Syntax NodesHandles = getnodesbyid(BGobj,NodeIDs)

Arguments
BGobj Biograph object.

NodeIDs Enter a cell string of node identifications.

Description NodesHandles = getnodesbyid(BGobj,NodeIDs) gets the node handles
for the specified nodes (NodeIDs).

Example 1 Create a biograph object.

species = {'Homosapiens','Pan','Gorilla','Pongo','Baboon',...
'Macaca','Gibbon'};

cm = magic(7)>25 & 1-eye(7);
bg = biograph(cm, species)

2 Find the handles to members of the Cercopithecidae family and
members of the Hominidae family.

Cercopithecidae = {'Macaca','Baboon'};
Hominidae = {'Homosapiens','Pan','Gorilla','Pongo'};
CercopithecidaeNodes = getnodesbyid(bg,Cercopithecidae);
HominidaeNodes = getnodesbyid(bg,Hominidae);

3 Color the families differently and draw a graph.

See Also Bioinformatics Toolbox

• function — biograph (object constructor)

• biograph object methods — dolayout, getancestors,
getdescendants, getedgesbynodeid, getnodesbyid, getrelatives,
view

2-185

getnodesbyid (biograph)

MATLAB

• functions — get, set

2-186

getpdb

Purpose Protein structure data from Protein Data Bank (PDB) database

Syntax Data = getpdb('PDBid')
getpdb(..., 'PropertyName', PropertyValue,...)
getpdb(..., 'ToFile', ToFileValue)

Arguments
PDBid Unique identifier for a protein structure record.

Each structure in the PDB is represented by a
4-character alphanumeric identifier.

For example, 4hhb is the identification code for
hemoglobin.

ToFileValue Property to specify the location and filename
for saving data. Enter either a filename or a
path and filename supported by your system
(ASCII text file).

Description getpdb retrieves sequence information from the Protein Data Bank.
This database contains 3-D biological macromolecular structure data.

Data = getpdb('PDBid') searches for the ID in the PDB database and
returns a MATLAB structure containing the following fields:

Fields

Header

Title

Compound

Source

Keywords

ExperimentData

Authors

Journal

2-187

getpdb

Fields

Remark1

Remark2

Remark3

Sequence

HeterogenName

HeterogenSynonym

Formula

Site

Atom

RevisionDate

Superseded

Remark4

Remark5

Heterogen

Helix

Turn

Cryst1

OriginX

Scale

Terminal

HeterogenAtom

Connectivity

getpdb(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-188

getpdb

getpdb(..., 'ToFile', ToFileValue) saves the data returned from
the database to a file (ToFileValue). Read a PDB formatted file back
into MATLAB using the function pdbread.

Examples Retrieve the structure information for the electron transport (heme
protein) with PDB ID 5CYT.

pdbstruct = getpdb('5CYT')

See Also Bioinformatics Toolbox functions getembl, getgenbank, getgenpept,
pdbdistplot, pdbplot, pdbread

2-189

getrelatives (biograph)

Purpose Find relatives in biograph object

Syntax Nodes = getrelatives(BiographNode)
Nodes = getrelatives(BiographNode,NumGenerations)

Arguments
BiographNode Node in a biograph object.

NumGenerations Number of generations. Enter a positive
integer.

Description Nodes = getrelatives(BiographNode) finds all the direct relatives
for a given node (BiographNode).

Nodes = getrelatives(BiographNode,NumGenerations) finds the direct
relatives for a given node (BiographNode) up to a specified number
of generations (NumGenerations).

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Find all nodes interacting with node 1.

intNodes = getrelatives(bg.nodes(1));
set(intNodes,'Color',[.7 .7 1]);
bg.view;

See Also Bioinformatics Toolbox

• function — biograph (object constructor)

• biograph object methods — dolayout, getancestors,
getdescendants, getedgesbynodeid, getnodesbyid, getrelatives,
view

MATLAB

2-190

getrelatives (biograph)

• functions — get, set

2-191

getrelatives (geneont)

Purpose Numeric IDs for relatives of Gene Ontology term

Syntax RelativeIDs = getrelatives(GeneontObj, ID)
getrelatives(..., 'PropertyName', PropertyValue,...)
getrelatives(..., 'Height', HeightValue)
getrelatives(..., 'Depth', DepthValue)

Arguments
GeneontObj

ID

Description RelativeIDs = getrelatives(GeneontObj, ID) returns the numeric
IDs (RelativeIDs) for the relatives of a term (ID) including the ID for
the term. ID is a nonnegative integer or a numeric vector with a set
of IDs.

getrelatives(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

getrelatives(..., 'Height', HeightValue) includes terms that are
related up through a specified number of levels (HeightValue) in the
Gene Ontology database. HeightValue is a positive integer. Default is 1.

getrelatives(..., 'Depth', DepthValue) includes terms that are
related down through a specified number of levels (DepthValue) in the
Gene Ontology database. DepthValue is a positive integer. Default is 1.

Examples 1 Download the Gene Ontology database from the Web into MATLAB.

GO = geneont('LIVE', true);

MATLAB creates a geneont object and displays the number of terms
in the database.

Gene Ontology object with 20005 Terms.

2 Get the relatives for a Gene Ontology term.

2-192

getrelatives (geneont)

subontology = getrelatives(GO,46680)

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), goannotread, num2goid

• geneont object methods — getancestors, getdescendants,
getmatrix

2-193

goannotread

Purpose Annotations from Gene Ontology annotated file

Syntax Annotation = goannotread('File')

Arguments
File

Description Annotation = goannotread('File') converts the contents of a Gene
Ontology annotated file (File) into an array of structs (Annotation).
Files should have the structure specified in

http://www.geneontology.org/GO.annotation.shtml#file

A list with some annotated files can be found at

http://www.geneontology.org/GO.current.annotations.shtml

Examples 1 Open a Web browser to

http://www.geneontology.org/GO.current.annotations.shtml

2 Download the file containing GO annotations for the gene products
of Saccharomyces cerevisiae (gene_association.sgd.gz) to your
MATLAB Current Directory.

3 Uncompress the file using the gunzip function.

gunzip('gene_association.sgd.gz')

4 Read the file into MATLAB.

SGDGenes = goannotread('gene_association.sgd');

5 Create a structure with GO annotations and get a list of genes.

S = struct2cell(SGDGenes);
genes = S(3,:)'

2-194

goannotread

See Also Bioinformatics Toolbox

• functions — geneont (object constructor), num2goid

• geneont object methods — getancestors, getdescendants,
getmatrix, getrelatives

2-195

gonnet

Purpose Gonnet scoring matrix

Syntax gonnet

Description gonnet returns the Gonnet matrix.

The Gonnet matrix is the recommended mutation matrix for initially
aligning protein sequences. Matrix elements are ten times the
logarithmic of the probability that the residues are aligned divided by
the probability that the residues are aligned by chance, and then matrix
elements are normalized to 250 PAM units.

Expected score = -0.6152, Entropy = 1.6845 bits Lowest score = -8,
Highest score = 14.2

Order:

A R N D C Q E G H I L K M F P S T W Y V B Z X *

References [1] Gaston H, Gonnet M, Cohen A, Benner S (1992), “Exhaustive
matching of the entire protein sequence database”, Science,
256:1443-1445.

See Also Bioinformatics Toolbox functions blosum, dayhoff, pam

2-196

gprread

Purpose Read microarray data from GenePix Results (GPR) file

Syntax GPRData = gprread('File')
gprread(..., 'PropertyName', PropertyValue,...)
gprread(..., 'CleanColNames', CleanColNamesValue)

Arguments
File GenePix Results formatted file (file extension

GPR). Enter a filename or a path and
filename.

CleanColNamesValue Property to control creating column names
that MATLAB can use as variable names.

Description GPRData = gprread('File') reads GenePix results data from File and
creates a MATLAB structure (GPRData) with the following fields:

Field

Header

Data

Blocks

Columns

Rows

Names

IDs

ColumnNames

Indices

Shape

gprread(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-197

gprread

gprread(..., 'CleanColNames', CleanColNamesValue). A GPR
file may contain column names with spaces and some characters
that MATLAB cannot use in MATLAB variable names. If
CleanColNamesValue is true, gprread returns names in the field
ColumnNames that are valid MATLAB variable names and names that
you can use in functions. By default, CleanColNamesValue is false
and the field ColumnNames may contain characters that are invalid for
MATLAB variable names.

The field Indices of the structure contains MATLAB indices that can
be used for plotting heat maps of the data.

For more details on the GPR format, see

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gpr

http://www.moleculardevices.com/pages/software/gn_gpr_format_history.html

For a list of supported file format versions, see

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html

GenePix is a registered trademark of Molecular Devices Corporation.

Examples % Read in a sample GPR file and plot the median foreground
% intensity for the 635 nm channel.
gprStruct = gprread('mouse_a1pd.gpr')
maimage(gprStruct,'F635 Median');

% Alternatively you can create a similar plot using
% more basic graphics commands.
F635Median = magetfield(gprStruct,'F635 Median');
imagesc(F635Median(gprStruct.Indices));
colormap bone
colorbar;

2-198

http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gpr
http://www.moleculardevices.com/pages/software/gn_gpr_format_history.html
http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html

gprread

See Also Bioinformatics Toolbox functions affyread, agferead,
celintensityread, galread, geosoftread, imageneread, magetfield,
sptread

2-199

hmmprofalign

Purpose Align query sequence to profile using hidden Markov model alignment

Syntax Alignment = hmmprofalign(Model,Seq)
[Alignment, Score] = hmmprofalign(Model,Seq)
[Score, Alignment, Prointer] = hmmprofalign(Model,Seq)
hmmprofalign(..., 'PropertyName', PropertyValue,...)
hmmprofalign(..., 'ShowScore', ShowScoreValue)
hmmprofalign(..., 'Flanks', FlanksValue)
hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue)
hmmprofalign(..., 'ScoreNullTransitions',
ScoreNullTransitionValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruc.

Seq Amino acid or nucleotide sequence. You
can also enter a structure with the field
Sequence.

ShowScoreValue Property to control displaying the scoring
space and the winning path. Enter either
true or false (default).

FlanksValue Property to control including the symbols
generated by the FLANKING INSERT states
in the output sequence. Enter either true or
false (default).

ScoreFlanksValue Property to control including the transition
probabilities for the flanking states in the
raw score. Enter either true or false
(default).

ScoreNullTransValue Property to control adjusting the raw
score using the null model for transitions
(Model.NullX). Enter either true or false
(default).

2-200

hmmprofalign

Description Alignment = hmmprofalign(Model,Seq) returns the score for the
optimal alignment of the query amino acid or nucleotide sequence (Seq)
to the profile hidden Markov model (Model). Scores are computed using
log-odd ratios for emission probabilities and log probabilities for state
transitions.

[Alignment, Score] = hmmprofalign(Model,Seq) returns a string
showing the optimal profile alignment.

Uppercase letters and dashes correspond to MATCH and DELETE
states respectively (the combined count is equal to the number of states
in the model). Lowercase letters are emitted by the INSERT states. For
more information about the HMM profile, see hmmprofstruct.

[Score, Alignment, Prointer] = hmmprofalign(Model,Seq) returns
a vector of the same length as the profile model with indices pointing
to the respective symbols of the query sequence. Null pointers (NaN)
mean that such states did not emit a symbol in the aligned sequence
because they represent model jumps from the BEGIN state of a MATCH
state, model jumps from the from a MATCH state to the END state, or
because the alignment passed through DELETE states.

hmmprofalign(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

hmmprofalign(..., 'ShowScore', ShowScoreValue), when
ShowScoreValue is true, displays the scoring space and the winning
path.

hmmprofalign(..., 'Flanks', FlanksValue), when FlanksValue
is true, includes the symbols generated by the FLANKING INSERT
states in the output sequence.

hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue), when
ScoreFlanksValue is true, includes the transition probabilities for the
flanking states in the raw score.

hmmprofalign(..., 'ScoreNullTransitions',
ScoreNullTransitionValue), when ScoreNullTransitionsValue
is true, adjusts the raw score using the null model for transitions
(Model.NullX).

2-201

hmmprofalign

Note Multiple target alignment is not supported in this
implementation. All the Model.LoopX probabilities are ignored.

Examples load('hmm_model_examples','model_7tm_2') % load a model example
load('hmm_model_examples','sequences') % load a sequence example
SCCR_RABIT=sequences(2).Sequence;
[a,s]=hmmprofalign(model_7tm_2,SCCR_RABIT,'showscore',true)

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofestimate,
hmmprofgenerate, hmmprofgenerate, hmmprofstruct, pfamhmmread,
showhmmprof, multialign, profalign

2-202

hmmprofestimate

Purpose Estimate profile Hidden Markov Model (HMM) parameters using
pseudocounts

Syntax hmmprofestimate(Model, MultipleAlignment,
'PropertyName', PropertyValue...)

hmmprofestimate(..., 'A', AValue)
hmmprofestimate(..., 'Ax', AxValue)
hmmprofestimate(..., 'BE', BEValue)
hmmprofestimate(..., 'BDx', BDxValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruc.

MultipleAlignment Array of sequences. Sequences can also be a
structured array with the aligned sequences
in a field Aligned or Sequences, and the
optional names in a field Header or Name.

A Property to set the pseudocount weight A.
Default value is 20.

Ax Property to set the pseudocount weight Ax.
Default value is 20.

BE Property to set the background symbol
emission probabilities. Default values are
taken from Model.NullEmission.

BMx Property to set the background transition
probabilities from any MATCH state ([M->M
M->I M->D]). Default values are taken from
hmmprofstruct.

BDx Property to set the background transition
probabilities from any DELETE state
([D->M D->D]). Default values are taken from
hmmprofstruct.

2-203

hmmprofestimate

Description hmmprofestimate(Model, MultipleAlignment, 'PropertyName',
PropertyValue...) returns a structure with the fields containing the
updated estimated parameters of a profile HMM. Symbol emission and
state transition probabilities are estimated using the real counts and
weighted pseudocounts obtained with the background probabilities.
Default weight is A=20, the default background symbol emission for
match and insert states is taken from Model.NullEmission, and the
default background transition probabilities are the same as default
transition probabilities returned by hmmprofstruct.

Model Construction: Multiple aligned sequences should contain
uppercase letters and dashes indicating the model MATCH and
DELETE states agreeing with Model.ModelLength. If model state
annotation is missing, but MultipleAlignment is space aligned, then a
"maximum entropy" criteria is used to select Model.ModelLength states.

Note: Insert and flank insert transition probabilities are not estimated,
but can be modified afterwards using hmmprofstruct.

hmmprofestimate(..., 'A', AValue) sets the pseudocount weight A =
Avalue when estimating the symbol emission probabilities. Default
value is 20.

hmmprofestimate(...,'Ax', AxValue) sets the pseudocount weight
Ax = Axvalue when estimating the transition probabilities. Default
value is 20.

hmmprofestimate(...,'BE', BEValue) sets the background
symbol emission probabilities. Default values are taken from
Model.NullEmission.

hmmprofestimate(...,'BMx', BMxValue) sets the background
transition probabilities from any MATCH state ([M->M M->I M->D]).
Default values are taken from hmmprofstruct.

hmmprofestimate(..., 'BDx', BDxValue) sets the background
transition probabilities from any DELETE state ([D->M D->D]). Default
values are taken from hmmprofstruct.

2-204

hmmprofestimate

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
showhmmprof

2-205

hmmprofgenerate

Purpose Generate random sequence drawn from profile Hidden Markov Model
(HMM

Syntax Sequence = hmmprofgenerate(Model,
'PropertyName', PropertyValue...)
[Sequence, Profptr] = hmmprofgenerage(Model)
hmmprofgenerate(..., 'Align', AlignValue)
hmmprofgenerate(..., 'Flanks', FlanksValue)
hmmprofgenerate(..., 'Signature', SignatureValue)

Arguments
Model Hidden Markov model created with the

function hmmprofstruc.

Align Property to control using uppercase letters
for matches and lowercase letters for inserted
letters. Enter either true or false. The default
value is false.

Flanks Property to control including the symbols
generated by the FLANKING INSERT states
in the output sequence. Enter either true or
false. The default value is false.

Signature Property to control returning the most likely
path and symbols. Enter either true or false.
Default value is false.

Description Sequence = hmmprofgenerate(Model, 'PropertyName', PropertyValue...)
returns a string (Seq) showing a sequence of amino acids or nucleotides
drawn from the profile (Model). The length, alphabet, and probabilities
of the Model are stored in a structure. For move information about
this structure, see hmmprofstruct

[Sequence, Profptr] = hmmprofgenerage(Model) returns a vector of the
same length as the profile model pointing to the respective states in the
output sequence. Null pointers (0) mean that such states do not exist in
the output sequence, either because they are never touched (i.e., jumps

2-206

hmmprofgenerate

from the BEGIN state to MATCH states or from MATCH states to the
END state), or because DELETE states are not in the output sequence
(not aligned output; see below).

hmmprofgenerate(..., 'Align', AlignValue) if Align is true, the
output sequence is aligned to the model as follows: uppercase letters
and dashes correspond to MATCH and DELETE states respectively
(the combined count is equal to the number of states in the model).
Lowercase letters are emitted by the INSERT or FLANKING INSERT
states. If Align is false, the output is a sequence of uppercase symbols.
The default value is true.

hmmprofgenerate(..., 'Flanks', FlanksValue) if Flanks is true, the
output sequence includes the symbols generated by the FLANKING
INSERT states. The default value is false.

hmmprofgenerate(..., 'Signature', SignatureValue) if Signature is
true, returns the most likely path and symbols. The default value is
false.

Examples load('hmm_model_examples','model_7tm_2') % load a model example
rand_sequence = hmmprofgenerate(model_7tm_2)

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct,
showhmmprof

2-207

hmmprofmerge

Purpose Concatenate prealigned strings of several sequences to profile Hidden
Markow Model (HMM)

Syntax A = hmmprofmerge(Sequences)
hmmprofmerge(Sequences, Names)
hmmprofmerge(Sequences, Names, Scores)

Arguments
Sequences Array of sequences. Sequences can also be a

structured array with the aligned sequences in a field
Aligned or Sequences, and the optional names in a
field Header or Name.

Names Names for the sequences. Enter a vector of names.

Scores Pairwise alignment scores from the function
hmmprofalign. Enter a vector of values with the same
length as the number of sequences in Sequences.

Description hmmprofmerge(Sequences) displays a set of prealigned sequences to a
HMM model profile. The output is aligned corresponding to the HMM
states.

• Match states — Uppercase letters

• Insert states — Lowercase letters or asterisks (*)

• Delete states — Dashes

Periods (.) are added at positions corresponding to inserts in other
sequences. The input sequences must have the same number of profile
states, that is, the joint count of capital letters and dashes must be
the same.

hmmprofmerge(Sequences, Names) labels the sequences with Names.

hmmprofmerge(Sequences, Names, Scores) sorts the displayed
sequences using Scores.

2-208

hmmprofmerge

Examples load('hmm_model_examples','model_7tm_2') %load model
load('hmm_model_examples','sequences') %load sequences

for ind =1:length(sequences)
[scores(ind),sequences(ind).Aligned] =...

hmmprofalign(model_7tm_2,sequences(ind).Sequence);
end

hmmprofmerge(sequences, scores)

See Also Bioinformatics Toolbox functions hmmprofalign, hmmprofstruct

2-209

hmmprofstruct

Purpose Create profile Hidden Markov Model (HMM) structure

Syntax Model = hmmprofstruct(Length)
Model = hmmprofstruct(Length, 'Field1', FieldValues1,...)
hmmprofstruct(Model, 'Field1', Field1Values1,...)

Arguments
Length Number of match states in the model.

Model Hidden Markov model created with the function
hmmprofstruc.

Field1 Field name in the structure Model. Enter a name
from the table below.

Description Model = hmmprofstruct(Length) returns a structure with the fields
containing the required parameters of a profile HMM. Length specifies
the number of match states in the model. All other mandatory model
parameters are initialized to the default values.

Model = hmmprofstruct(Length, 'Field1', FieldValues1, ...)
creates a profile HMM using the specified fields and parameters. All
other mandatory model parameters are initialized to default values.

hmmprofstruct(Model, 'Field1', Field1Values1, ...) returns the
updated profile HMM with the specified fields and parameters. All other
mandatory model parameters are taken from the reference MODEL.

HMM Profile Structure Format

Model parameters fields (mandatory). All probability values are in the
[0 1] range.

Field Name Description

ModelLength Length of the profile (number of MATCH states)

Alphabet 'AA' or 'NT'. Default is 'AA’.

2-210

hmmprofstruct

MatchEmission Symbol emission probabilities in the MATCH
states.

Size is [ModelLength x AlphaLength]. Defaults
to uniform distributions. May accept a structure
with residue counts (see aacount or basecount).

InsertEmission Symbol emission probabilities in the INSERT
state.

Size is [ModelLength x AlphaLength]. Defaults
to uniform distributions. May accept a structure
with residue counts (see aacount or basecount).

NullEmission Symbol emission probabilities in the MATCH
and INSERT states for the NULL model. NULL
model, size is [1 x AlphaLength]. Defaults to
a uniform distribution. May accept a structure
with residue counts (see aacount or basecount).
The NULL model is used to compute the log-odds
ratio at every state and avoid overflow when
propagating the probabilities through the model.

BeginX BEGIN state transition probabilities.

Format is

[B->D1 B->M1 B->M2 B->M3 B->Mend]

Notes:

sum(S.BeginX) = 1

For fragment profiles

sum(S.BeginX(3:end)) = 0

Default is [0.01 0.99 0 0 ... 0].

2-211

hmmprofstruct

MatchX MATCH state transition probabilities

Format is

[M1->M2 M2->M3 ... M[end-1]->Mend;
M1->I1 M2->I2 ... M[end-1]->I[end-1];
M1->D2 M2->D3 ... M[end-1]->Dend;
M1->E M2->E ... M[end-1]->E]

Notes:

sum(S.MatchX) = [1 1 ... 1]

For fragment profiles

sum(S.MatchX(4,:)) = 0

Default is repmat([0.998 0.001 0.001
0],profLength-1,1).

InsertX INSERT state transition probabilities

Format is

[I1->M2 I2->M3 ... I[end-1]->Mend;
[I1->I1 I2->I2 ... I[end-1]->I[end-1]]

Note:

sum(S.InsertX) = [1 1 ... 1]

Default is repmat([0.5 0.5],profLength-1,1).

2-212

hmmprofstruct

DeleteX DELETE state transition probabilities. The
format is

[D1->M2 D2->M3 ... D[end-1]->Mend ;
[D1->D2 D2->D3 ... D[end-1]->Dend]

Note: sum(S.DeleteX) = [1 1 ... 1]

Default is repmat([0.5 0.5],profLength-1,1).

FlankingInsertX Flanking insert states (N and C) used for LOCAL
profile alignment. The format is

[N->B C->T ;
[N->N C->C]

Note: sum(S.FlankingInsertsX) = [1 1]

To force global alignment use

S.FlankingInsertsX = [1 1; 0 0]

Default is [0.01 0.01; 0.99 0.99].

LoopX Loop states transition probabilities used for
multiple hits alignment. The format is

[E->C J->B ;
E->J J->J]

Note: sum(S.LoopX) = [1 1]

Default is [0.5 0.01; 0.5 0.99]

NullX Null transition probabilities used to provide scores
with log-odds values also for state transitions.
The format is

[G->F ; G->G]

Note: sum(S.NullX) = 1

2-213

hmmprofstruct

Default is [0.01; 0.99]

Annotation fields (optional)

Name Model Name

IDNumber Identification Number

Description Short description of the model

A profile Markov model is a common statistical tool for modeling
structured sequences composed of symbols . These symbols include
randomness in both the output (emission of symbols) and the state
transitions of the process. Markov models are generally represented
by state diagrams.

The figure shown below is a state diagram for a HMM profile of length 4.
Insert, match, and delete states are in the regular part (middle section).

• Match state means that the target sequence is aligned to the profile
at the specific location,

• Delete state represents a gap or symbol absence in the target
sequence (also know as a silent state because it does not emit any
symbol),

• Insert state represents the excess of one or more symbols in the
target sequence that are not included in the profile.

Flanking states (S, N, B, E, C, T) are used for proper modeling of the
ends of the sequence, either for global, local or fragment alignment of
the profile. S, N, E, and T are silent while N and C are used to insert
symbols at the flanks.

2-214

hmmprofstruct

Examples hmmprofstruct(100,'Alphabet','AA')

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofmerge, pfamhmmread,
showhmmprof, aacount, basecount

2-215

imageneread

Purpose Read microarray data from ImaGene Results file

Syntax imagenedata = imageneread('File')
imagenedata = imageneread(..., 'CleanColNames',
CleanColNamesValue, ...)

Arguments
File ImaGene Results formatted file. Enter a

filename or a path and filename.

CleanColNameValue Property to control creating column names
that MATLAB can use as variable names.

Description imagenedata = imageneread('File') reads ImaGene results data
from File and creates a MATLAB structure imagedata containing the
following fields:

Field

HeaderAA

Data

Blocks

Rows

Columns

Fields

IDs

ColumnNames

Indices

Shape

imagenedata = imageneread(..., 'PropertyName', PropertyValue,
...) defines optional properties using property name/value pairs,
described as follows:

2-216

imageneread

imagenedata = imageneread(..., 'CleanColNames',
CleanColNamesValue, ...). An ImaGene file may contain column
names with spaces and some characters that MATLAB cannot use in
MATLAB variable names. If CleanColNamesValue is true, imagene
returns, in the field ColumnNames, names that are valid MATLAB
variable names and names that you can use in functions. By default,
CleanColNamesValue is false and the field ColumnNames may contain
characters that are not valid for MATLAB variable names.

The field Indices of the structure contains MATLAB indices that you
can use for plotting heat maps of the data with the function image or
imagesc.

For more details on the ImaGene format and example data, see the
ImaGene User Manual.

ImaGene is a registered trademark of BioDiscovery, Inc.

Examples 1 Read in a sample ImaGene Results file. Note, the file cy3.txt is not
provided with the Bioinformatics Toolbox.

cy3Data = imageneread('cy3.txt');

2 Plot the signal mean.

maimage(cy3Data,'Signal Mean');

3 Read in a sample ImaGene Results file. Note, the file cy5.txt is not
provided with the Bioinformatics Toolbox.

cy5Data = imageneread('cy5.txt');

4 Create a loglog plot of the signal median from two ImaGene Results
files.

sigMedianCol = find(strcmp('Signal Median',cy3Data.ColumnNames));
cy3Median = cy3Data.Data(:,sigMedianCol);
cy5Median = cy5Data.Data(:,sigMedianCol);
maloglog(cy3Median,cy5Median,'title','Signal Median');

2-217

imageneread

See Also Bioinformatics Toolbox

• functions — gprread, maboxplot, maimage, sptread

2-218

int2aa

Purpose Convert amino acid sequence from integer to letter representation

Syntax SeqChar = int2aa(SeqInt)
int2aa(..., 'PropertyName', PropertyValue,...)
int2aa(..., 'Case', CaseValue)

Arguments
SeqInt Amino acid sequence represented with integers. Enter a

vector of integers from the table Mapping Amino Acid
Integers to Letters below. The array does not have to be
of type integer, but it does have to contain only integer
numbers. Integers are arbitrarily assigned to IUB/IUPAC
letters.

Case Property to select the case of the returned character
string. Enter either 'upper' (default) or 'lower'.

Mapping Amino Acid Integers to Letters

Amino Acid Code
Amino
Acid Code Amino Acid

Alanine A1 Isoleucine I10 Tyrosine Y19

Arginine R2 Leucine L11 Valine V20

Asparagine N3 Lysine K12 Aspartic
acid or
Asparagine

B21

Aspartic acid
(aspartate)

D4 Methionine M13 Glutamic
acid or
Glutamine

Z22

Cystine C5 PhenylalanineF14 Any amino
acid

X23

Glutamine Q6 Proline P15 Translation
stop

*24

2-219

int2aa

Amino Acid Code
Amino
Acid Code Amino Acid

Glutamic
acid
(glutamate)

E7 Serine S16 Gap of
indeterminate
length

- 25

Glycine G8 Threonine T17 Unknown or
any integer
not in table

?0

Histidine H9 Tryptophan W18

Description SeqChar = int2aa(SeqInt) converts a 1-by-N array of integers to a
character string using the table Mapping Amino Acid Integers to
Letters above.

int2aa(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

int2aa(..., 'Case', CaseValue) sets the output case of the nucleotide
string. Default is uppercase.

Examples s = int2aa([13 1 17 11 1 21])

s =
MATLAB

See Also Bioinformatics Toolbox functions aa2int, aminolookup, int2nt, nt2int

2-220

int2nt

Purpose Convert nucleotide sequence from integer to letter representation

Syntax int2nt(SeqNT)
int2nt(..., 'PropertyName', PropertyValue,...)
int2nt(..., 'Alphabet', AlphabetValue)
int2nt(..., 'Unknown', UnknownValue)
int2nt(..., 'Case', CaseValue)

Arguments
SeqNT Nucleotide sequence represented by integers.

Enter a vector of integers from the table
Mapping Nucleotide Integers to Letters below.
The array does not have to be of type integer,
but it does have to contain only integer
numbers. Integers are arbitrarily assigned to
IUB/IUPAC letters.

AlphabetValue Property to select the nucleotide alphabet.
Enter either 'DNA' or 'RNA'.

UnknownValue Property to select the integer value for the
unknown character. Enter a character to
map integers 16 or greater to an unknown
character. The character must not be one
of the nucleotide characters A, T, C, G or the
ambiguous nucleotide characters N, R, Y, K, M, S,
W, B, D, H, or V. The default character is *.

CaseValue Property to select the letter case for the
nucleotide sequence. Enter either 'upper'
(default) or 'lower' .

2-221

int2nt

Mapping Nucleotide Integers to Letters

Base Code Base Code Base Code

Adenosine 1—A T, C
(pyrimidine)

6—Y A, T, G (not
C)

12—D

Cytidine 2—C G, T (keto) 7—K A, T, C (not
G)

13—H

Guanine 3—G A, C (amino) 8—M A, G, C (not
T)

14—V

Thymidine 4—T G, C (strong) 9—S A, T, G, C (any) 15—N

Uridine (if
’Alphabet’ =
’RNA’

4—U A, T (weak) 10—W Gap of
indeterminate
length

16 — -

A, G
(purine)

5—R T, G, C (not
A)

11—B Unknown
(default)

0 and
17—*

Description int2nt(SeqNT) converts a 1-by-N array of integers to a character string
using the table Mapping Nucleotide Letters to Integers above.

int2nt(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

int2nt(..., 'Alphabet', AlphabetValue) selects the nucleotide
alphabet to use. The default value is 'DNA', which uses the symbols A,
T, C, and G. If AlphabetValue is set to 'RNA', int2nt uses the symbols
A, C, U, G instead.

int2nt(..., 'Unknown', UnknownValue) specifies the character to
represent an unknown nucleotide base.

2-222

int2nt

int2nt(..., 'Case', CaseValue) selects the output case of the
nucleotide string.

Examples Enter a sequence of integers as a MATLAB vector (space or
comma-separated list with square brackets).

s = int2nt([1 2 4 3 2 4 1 3 2])

s =
ACTGCTAGC

Define a symbol for unknown numbers 16 and greater.

si = [1 2 4 20 2 4 40 3 2];
s = int2nt(si, 'unknown', '#')

s =
ACT#CT#GC

See Also Bioinformatics Toolbox function aa2int, int2aa, nt2int

2-223

isoelectric

Purpose Estimate isoelectric point for amino acid sequence

Syntax pI = isoelectric(SeqAA)
[pI Charge] = isoelectric(SeqAA)
isoelectric(..., 'PropertyName', PropertyValue,...)
isoelectric(..., 'PKVals', PKValsValue)
isoelectric(..., 'Charge', ChargeValue)
isoelectric(..., 'Chart', ChartValue)

Arguments
SeqAA Amino acid sequence. Enter a character string or a

vector of integers from the table . Examples: 'ARN'
or [1 2 3].

PKValsValue Property to provide alternative pK values.

ChargeValue Property to select a specific pH for estimating charge.
Enter a number between 0 and 14. The default value
is 7.2.

ChartValue Property to control plotting a graph of charge versus
pH. Enter true or false.

Description pI = isoelectric(SeqAA) returns the estimated isoelectric point (pI)
for an amino acid sequence. The isoelectric point is the pH at which the
protein has a net charge of zero

[pI Charge] = isoelectric(SeqAA) returns the estimated isoelectric
point (pI) for an amino acid sequence and the estimated charge for a
given pH (default is typical intracellular pH 7.2).

The estimates are skewed by the underlying assumptions that all amino
acids are fully exposed to the solvent, that neighboring peptides have no
influence on the pK of any given amino acid, and that the constitutive
amino acids, as well as the N- and C-termini, are unmodified. Cysteine

2-224

isoelectric

residues participating in disulfide bridges also affect the true pI and are
not considered here. By default, isoelectric uses the EMBOSS amino
acid pK table, or you can substitute other values using the property
PKVals.

• If the sequence contains ambiguous amino acid characters (b z * –),
isoelectric ignores the characters and displays a warning message.

Warning: Symbols other than the standard 20 amino acids
appear in the sequence.

• If the sequence contains undefined amino acid characters (i j o) ,
isoelectric ignores the characters and displays a warning message.

Warning: Sequence contains unknown characters. These will
be ignored.

isoelectric(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

isoelectric(..., 'PKVals', PKValsValue) uses the alternative pK
table stored in the text file PKValValues. For an example of a pK text
file, see the file Emboss.pK.

N_term 8.6
K 10.8
R 12.5
H 6.5
D 3.9
E 4.1
C 8.5
Y 10.1
C_term 3.6

isoelectric(..., 'Charge', ChargeValue) returns the estimated
charge of a sequence for a given pH (ChargeValue).

2-225

isoelectric

isoelectric(..., 'Chart', ChartValue) when ChartValue is true,
returns a graph plotting the charge of the protein versus the pH of
the solvent.

Example % Get a sequence from PDB.
pdbSeq = getpdb('1CIV', 'SequenceOnly', true)
% Estimate its isoelectric point.
isoelectric(pdbSeq)

% Plot the charge against the pH for a short polypeptide sequence.
isoelectric('PQGGGGWGQPHGGGWGQPHGGGGWGQGGSHSQG', 'CHART', true)

% Get the Rh blood group D antigen from NCBI and calculate
% its charge at pH 7.3 (typical blood pH).
gpSeq = getgenpept('AAB39602')
[pI Charge] = isoelectric(gpSeq, 'Charge', 7.38)

See Also Bioinformatics functions aacount, molweight

2-226

jcampread

Purpose Read JCAMP-DX formatted files

Syntax JCAMPData = jcampread(File)

Arguments
File JCAMP-DX formatted file (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to
a file. File can also be a MATLAB character array
that contains the text of a JCAMP-DX formatted file.

Description JCAMP-DX is a file format for infrared, NMR, and mass spectrometry
data from the Joint Committee on Atomic and Molecular Physical Data
(JCAMP). jcampread supports reading data from files saved with
Versions 4.24 and 5 of the JCAMP-DX format. For more details, see

http://www.jcamp.org/index.html

JCAMPData = jcampread(File)reads data from a JCAMP-DX formatted
file (File) and creates a MATLAB structure (JCAMPData) containing
the following fields:

Field

Title

DataType

Origin

Owner

Blocks

Notes

The Blocks field of the structure is an array of structures corresponding
to each set of data in the file. These structures have the following fields:

2-227

http://www.jcamp.org/index.html

jcampread

Field

XData

YData

XUnits

YUnits

Notes

Examples 1 Download test data in the file isa_ms1.dx from

http://www.jcamp.org/testdata.html/testdata.zip

2 Read a JCAMP-DX file (isas_ms1.dx) into MATLAB and plot the
mass spectrum.

jcampStruct = jcampread('isas_ms1.dx')
data = jcampStruct.Blocks(1);
stem(data.XData,data.YData, '.', 'MarkerEdgeColor','w');
title(jcampStruct.Title);
xlabel(data.XUnits);
ylabel(data.YUnits);

A figure window opens with the mass spectrum.

2-228

jcampread

See Also Bioinformatics Toolbox functions mslowess, mssgolay, msviewer

2-229

joinseq

Purpose Join two sequences to produce shortest supersequence

Syntax SeqNT3 = joinseq(SeqNT1, SeqNT2)

Arguments
SeqNT1, SeqNT2 Nucleotide sequences.

Description SeqNT3 = joinseq(SeqNT1, SeqNT2) creates a new sequence that is the
shortest supersequence of SeqNT1 and SeqNT2. If there is no overlap
between the sequences, then SeqNT2 is concatenated to the end of
SeqNT1. If the length of the overlap is the same at both ends of the
sequence, then the overlap at the end of SeqNT1 and the start of SeqNT2
is used to join the sequences.

If SeqNT1 is a subsequence of SeqNT2, then SeqNT2 is returned as the
shortest supersequence and vice versa.

Examples seq1 = 'ACGTAAA';
seq2 = 'AAATGCA';
joined = joinseq(seq1,seq2)

joined =
ACGTAAATGCA

See Also MATLAB functions cat, strcat, strfind

2-230

knnclassify

Purpose Classify data using nearest neighbor method

Syntax Class = knnclassify(Sample, Training, Group)
Class = knnclassify(Sample, Training, Group, k)
Class = knnclassify(Sample, Training, Group, k, distance)
Class = knnclassify(Sample, Training, Group, k, distance, rule)

Arguments
Sample

Training

Group

k

distance

rule

Description Class = knnclassify(Sample, Training, Group) classifies the rows
of the data matrix Sample into groups, based on the grouping of the rows
of Training. Sample and Training must be matrices with the same
number of columns. Group is a vector whose distinct values define the
grouping of the rows in Training. Each row of Training belongs to the
group whose value is the corresponding entry of Group. knnclassify
assigns each row of Sample to the group for the closest row of Training.
Group can be a numeric vector, a string array, or a cell array of strings.
Training and Group must have the same number of rows. knnclassify
treats NaNs or empty strings in Group as missing values, and ignores
the corresponding rows of Training. Class indicates which group each
row of Sample has been assigned to, and is of the same type as Group.

Class = knnclassify(Sample, Training, Group, k) enables you to
specify k, the number of nearest neighbors used in the classification.
The default is 1.

Class = knnclassify(Sample, Training, Group, k, distance)
enables you to specify the distance metric. The choices for distance are

2-231

knnclassify

'euclidean' Euclidean distance — the default

'cityblock' Sum of absolute differences

'cosine' One minus the cosine of the included angle between
points (treated as vectors)

'correlation' One minus the sample correlation between points
(treated as sequences of values)

'hamming' Percentage of bits that differ (only suitable for binary
data)

Class = knnclassify(Sample, Training, Group, k, distance,
rule) enables you to specify the rule used to decide how to classify the
sample. The choices for rule are

'nearest' Majority rule with nearest point tie-break — the
default

'random' Majority rule with random point tie-break

'consensus' Consensus rule

The default behavior is to use majority rule. That is, a sample point is
assigned to the class the majority of the k nearest neighbors are from.
Use 'consensus' to require a consensus, as opposed to majority rule.
When using the 'consensus' option, points where not all of the k
nearest neighbors are from the same class are not assigned to one of the
classes. Instead the output Class for these points is NaN for numerical
groups or '' for string named groups. When classifying to more than
two groups or when using an even value for k, it might be necessary to
break a tie in the number of nearest neighbors. Options are 'random',
which selects a random tiebreaker, and 'nearest', which uses the
nearest neighbor among the tied groups to break the tie. The default
behavior is majority rule, with nearest tie-break.

Example 1 The following example classifies the rows of the matrix sample:

sample = [.9 .8;.1 .3;.2 .6]

2-232

knnclassify

sample =
0.9000 0.8000
0.1000 0.3000
0.2000 0.6000

training=[0 0;.5 .5;1 1]

training =
0 0

0.5000 0.5000
1.0000 1.0000

group = [1;2;3]

group =
1
2
3

class = knnclassify(sample, training, group)

class =
3
1
2

Row 1 of sample is closest to row 3 of Training, so class(1) = 3. Row
2 of sample is closest to row 1 of Training, so class(2) = 1. Row 3 of
sample is closest to row 2 of Training, so class(3) = 2.

Example 2 The following example classifies each row of the data in sample into one
of the two groups in training. The following commands create the
matrix training and the grouping variable group, and plot the rows of
training in two groups.

training = [mvnrnd([1 1], eye(2), 100); ...

2-233

knnclassify

mvnrnd([-1 -1], 2*eye(2), 100)];
group = [repmat(1,100,1); repmat(2,100,1)];
gscatter(training(:,1),training(:,2),group,'rb','+x');
legend('Training group 1', 'Training group 2');
hold on;

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4
Training group 1
Training group 2

The following commands create the matrix sample, classify its rows into
two groups, and plot the result.

sample = unifrnd(-5, 5, 100, 2);
% Classify the sample using the nearest neighbor classification
c = knnclassify(sample, training, group);
gscatter(sample(:,1),sample(:,2),c,'mc'); hold on;
legend('Training group 1','Training group 2', ...

'Data in group 1','Data in group 2');
hold off;

2-234

knnclassify

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Training group 1
Training group 2
Data in group 1
Data in group 2

Example 3 The following example uses the same data as in Example 2, but classifies
the rows of sample using three nearest neighbors instead of one.

gscatter(training(:,1),training(:,2),group,'rb',+x');
hold on;
c3 = knnclassify(sample, training, group, 3);
gscatter(sample(:,1),sample(:,2),c3,'mc','o');
legend('Training group 1','Training group 2','Data in group 1','Data

2-235

knnclassify

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Training group 1
Training group 2
Data in group 1
Data in group 2

If you compare this plot with the one in Example 2, you see that some of
the data points are classified differently using three nearest neighbors.

References [1] Mitchell T (1997), Machine Learning, McGraw-Hill.

See Also Bioinformatics Toolbox functions knnimpute, classperf, crossvalind,
svmclassify, svmtrain

Statistical Toolbox functions classify

2-236

knnimpute

Purpose Impute missing data using nearest-neighbor method

Syntax knnimpute(Data)
knnimpute(Data, k)
knnimpute(..., 'PropertyName', PropertyValue,...)
knnimpute(..., 'Distance', DistanceValue)
knnimpute(..., 'DistArgs', DistArgsValue)
knnimpute(..., 'Weights', WeightsValues)
knnimpute(..., 'Median', MedianValue)

Arguments
Data

k

Description knnimpute(Data)replaces NaNs in Data with the corresponding value
from the nearest-neighbor column. The nearest-neighbor column is
the closest column in Euclidean distance. If the corresponding value
from the nearest-neighbor column is also NaN, the next nearest column
is used.

knnimpute(Data, k)replaces NaNs in Data with a weighted mean of the
k nearest-neighbor columns. The weights are inversely proportional to
the distances from the neighboring columns.

knnimpute(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

knnimpute(..., 'Distance', DistanceValue) computes
nearest-neighbor columns using the distance metric distfun. The
choices for DistanceValue are

'euclidean' Euclidean distance (default)

'seuclidean' Standardized Euclidean distance — each coordinate
in the sum of squares is inversely weighted by the
sample variance of that coordinate.

2-237

knnimpute

'cityblock' City block distance

'mahalanobis'Mahalanobis distance

'minkowski' Minkowski distance with exponent 2

'cosine' One minus the cosine of the included angle

'correlation'One minus the sample correlation between
observations, treated as sequences of values

'hamming' Hamming distance — the percentage of coordinates
that differ

'jaccard' One minus the Jaccard coefficient — the percentage
of nonzero coordinates that differ

'chebychev' Chebychev distance (maximum coordinate difference)

function
handle

A handle to a distance function, specified using @, for
example @distfun

See pdist for more details.

knnimpute(..., 'DistArgs', DistArgsValue) passes arguments
(DistArgsValue) to the function distfun. DistArgsValue can be a single
value or a cell array of values.

knnimpute(..., 'Weights', WeightsValues) enables you to specify
the weights used in the weighted mean calculation. w should be a vector
of length k.

knnimpute(..., 'Median', MedianValue) when MedianValue is true,
uses the median of the k nearest neighbors instead of the weighted
mean.

Example 1 A = [1 2 5;4 5 7;NaN -1 8;7 6 0]

A =

1 2 5
4 5 7

NaN -1 8

2-238

knnimpute

7 6 0

Note that A(3,1) = NaN. Because column 2 is the closest column to
column 1 in Euclidean distance, knnimpute imputes the (3,1) entry of
column 1 to be the corresponding entry of column 2, which is -1.

knnimpute(A)

ans =

1 2 5
4 5 7

-1 -1 8
7 6 0

Example 2 The following example loads the data set yeastdata and imputes
missing values in the array yeastvalues.

load yeastdata
% Remove data for empty spots
emptySpots = strcmp('EMPTY',genes);
yeastvalues(emptySpots,:) = [];
genes(emptySpots) = [];
% Impute missing values
imputedValues = knnimpute(yeastvalues);

References [1] Speed T (2003), Statistical Analysis of Gene Expression Microarray
Data, Chapman & Hall/CRC.

[2] Hastie T, Tibshirani R, Sherlock G. Eisen M, Brown P, Botstein D
(1999), “Imputing missing data for gene expression arrays”, Technical
Report, Division of Biostatistics, Stanford University.

[3] Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani
R, Botstein D, Altman R (2001), “Missing value estimation methods for
DNA microarrays”, Bioinformatics, 17(6)520-525.

2-239

knnimpute

See Also Bioinformatics Toolbox function knnclassify

MATLAB function isnan

Statistics Toolbox functions nanmean, nanmedian, pdist

2-240

maboxplot

Purpose Box plot for microarray data

Syntax maboxplot(MAData)
maboxplot(MAData, ColumnName)
maboxplot(MAStruct, FieldName)
H = maboxplot(...)
[H, HLines] = maboxplot(...)
maboxplot(..., 'PropertyName', PropertyValue, ...)
maboxplot(..., 'Title', TitleValue, ...)
maboxplot(..., 'Notch', NotchValue, ...)
maboxplot(..., 'Symbol', SymbolValue, ...)
maboxplot(..., 'Orientation', OrientationValue, ...)
maboxplot(..., 'WhiskerLength', WhiskerLengthValue, ...)

Arguments
MAData A numeric array or a structure containing a

field called Data. The values in the columns
of MAData will be used to create box plots.

ColumnName An array of column names corresponding to
the data in MAData.

MAStruct A microarray data structure.

FieldName A field within the microarray data structure,
MAStruct. The values in the field FieldName
will be used to create box plots.

TitleValue A string to use as the title for the plot. The
default title is FieldName.

NotchValue Property to control the type of boxes drawn.
Enter either true for notched boxes, or
false, for square boxes. Default is false.

2-241

maboxplot

OrientationValue Property to specify the orientation of the box
plot. Enter 'Vertical' or 'Horizontal'.
Default is 'Horizontal'.

WhiskerLengthValue Property to specify the maximum length
of the whiskers as a function of the
interquartile range (IQR). The whisker
extends to the most extreme data value
within WhiskerLengthValue*IQR of the box.
Default = 1.5. If WhiskerLengthValue
equals 0, then maboxplot displays all data
values outside the box, using the plotting
symbol Symbol.

Description maboxplot(MAData) displays a box plot of the values in the columns of
data (MAData). MAData can be a numeric array or a structure containing
a field called Data.

maboxplot(MAData, ColumnName) labels the box plot column names.

maboxplot(MAStruct, FieldName) displays a box plot of the values in
the field FieldName in the microarray data structure MAStruct. If
MAStruct is block based, maboxplot creates a box plot of the values in
the field FieldName for each block.

H = maboxplot(...) returns the handle of the box plot axes.

[H, HLines] = maboxplot(...) returns the handles of the lines used
to separate the different blocks in the image.

maboxplot(..., 'PropertyName', PropertyValue, ...) defines
optional properties using property name/value pairs in any order. These
property name/value pairs are as follows:

maboxplot(..., 'Title', TitleValue, ...) allows you to specify
the title of the plot. The default TitleValue is FieldName.

maboxplot(..., 'Notch', NotchValue, ...) if NotchValue is true,
draws notched boxes. The default is false to show square boxes.

2-242

maboxplot

maboxplot(..., 'Symbol', SymbolValue, ...) allows you to specify
the symbol used for outlier values. The default Symbol is '+'.

maboxplot(..., 'Orientation', OrientationValue, ...) allows
you to specify the orientation of the box plot. The choices are
'Vertical' and 'Horizontal'. The default is 'Vertical'.

maboxplot(..., 'WhiskerLength', WhiskerLengthValue, ...)
allows you to specify the whisker length for the box plot.
WhiskerLengthValue defines the maximum length of the whiskers as a
function of the interquartile range (IQR) (default = 1.5). The whisker
extends to the most extreme data value within WhiskerLength*IQR of
the box. If WhiskerLengthValue equals 0, then maboxplot displays all
data values outside the box, using the plotting symbol Symbol.

Examples load yeastdata
maboxplot(yeastvalues,times);
xlabel('Sample Times');

% Using a structure
geoStruct = getgeodata('GSM1768');
maboxplot(geoStruct);

% For block-based data
madata = gprread('mouse_a1wt.gpr');
maboxplot(madata,'F635 Median');
figure
maboxplot(madata,'F635 Median - B635','TITLE',...

'Cy5 Channel FG - BG');

See Also Bioinformatics Toolbox functions magetfield, maimage, mairplot,
maloglog, malowess, manorm, mavolcanoplot

Statistics Toolbox function boxplot

2-243

magetfield

Purpose Extract data from a microarray structure

Syntax magetfield(MAStruct, FieldName)

Arguments
MAStruct

FieldName

Description magetfield(MAStruct, FieldName) extracts data for a column
(FieldName) from a microarray structure (MAStruct).

The benefit of this function is to hide the details of extracting a column
of data from a structure created with one of the microarray reader
functions (gprread, agferead, sptread, imageneread).

Example maStruct = gprread('mouse_a1wt.gpr');
cy3data = magetfield(maStruct,'F635 Median');
cy5data = magetfield(maStruct,'F532 Median');
mairplot(cy3data,cy5data,'title','R vs G IR plot');

See Also Bioinformatics Toolbox functions agferead, gprread, imageneread,
maboxplot, mairplot, maloglog, malowess, sptread

2-244

maimage

Purpose Spatial image for microarray data

Syntax maimage(X, FieldName)
H = maimage(...)
[H, HLines] = maimage(...)
maimage(..., 'PropertyName', PropertyValue,...)
maimage(..., 'Title', TitleValue)
maimage(..., 'ColorBar', ColorBarValue)
maimage(..., 'HandleGraphicsPropertyName' PropertyValue)

Arguments
X A microarray data structure.

FieldName A field in the microarray data structure X.

TitleValue A string to use as the title for the plot. The default
title is FieldName.

ColorBarValue Property to control displaying a colorbar in the
figure window. Enter either true or false. The
default value is false.

Description maimage(X, FieldName) displays an image of field FieldName from
microarray data structure X. Microarray data can be GenPix Results
(GPR) format. After creating the image, click a data point to display
the value and ID, if known.

H = maimage(...) returns the handle of the image.

[H, HLines] = maimage(...) returns the handles of the lines used
to separate the different blocks in the image.

maimage(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

maimage(..., 'Title', TitleValue) allows you to specify the title of
the plot. The default title is FieldName.

2-245

maimage

maimage(..., 'ColorBar', ColorBarValue), when ColorBarValue is
true, a colorbar is shown. If ColorBarValue is false, no colorbar is
shown. The default is for the colorbar to be shown.

maimage(..., 'HandleGraphicsPropertyName' PropertyValue) allows
you to pass optional Handle Graphics® property name/value pairs
to the function. For example, a name/value pair for color could be
maimage(..., 'color' 'r').

Examples madata = gprread('mouse_a1wt.gpr');
maimage(madata,'F635 Median');
figure;
maimage(madata,'F635 Median - B635',...

'Title','Cy5 Channel FG - BG');
colormap hot

See Also Bioinformatics Toolbox functions maboxplot, magetfield, mairplot,
maloglog, malowess

MATLAB function imagesc

2-246

mainvarsetnorm

Purpose Perform rank invariant set normalization on gene expression values
from two experimental conditions or phenotypes

Syntax NormDataY = mainvarsetnorm(DataX, DataY)
NormDataY = mainvarsetnorm(..., 'Thresholds',
ThresholdsValue, ...)
NormDataY = mainvarsetnorm(..., 'Exclude', ExcludeValue, ...)
NormDataY = mainvarsetnorm(..., 'Prctile', PrctileValue, ...)
NormDataY = mainvarsetnorm(..., 'Iterate', IterateValue, ...)
NormDataY = mainvarsetnorm(..., 'Method', MethodValue, ...)
NormDataY = mainvarsetnorm(..., 'Span', SpanValue, ...)
NormDataY = mainvarsetnorm(..., 'Showplot',
ShowplotValue, ...)

Arguments
DataX Vector of gene expression values from a single

experimental condition or phenotype, where
each row corresponds to a gene. These data
points are used as the baseline.

DataY Vector of gene expression values from a single
experimental condition or phenotype, where
each row corresponds to a gene. These data
points will be normalized using the baseline.

ThresholdsValue Property to set the thresholds for the lowest
average rank and the highest average rank,
which are used to determine the invariant set.
The rank invariant set is a set of data points
whose proportional rank difference is smaller
than a given threshold. The threshold for
each data point is determined by interpolating
between the threshold for the lowest average
rank and the threshold for the highest average
rank. Select these two thresholds empirically
to limit the spread of the invariant set, but
allow enough data points to determine the
normalization relationship.

2-247

mainvarsetnorm

ThresholdsValue is a 1-by-2 vector [LT,
HT], where LT is the threshold for the lowest
average rank and HT is threshold for the
highest average rank. Values must be between
0 and 1. Default is [0.03, 0.07].

ExcludeValue Property to filter the invariant set of data
points, by excluding the data points whose
average rank (between DataX and DataY) is
in the highest N ranked averages or lowest N
ranked averages.

PrctileValue Property to stop the iteration process when
the number of data points in the invariant set
reaches N percent of the total number of input
data points. Default is 1.

Note If you do not use this property, the
iteration process continues until no more data
points are eliminated.

IterateValue Property to control the iteration process for
determining the invariant set of data points.
Enter true to repeat the process until either
no more data points are eliminated, or a
predetermined percentage of data points
(StopPrctileValue) is reached. Enter false
to perform only one iteration of the process.
Default is true.

Tip Select false for smaller data sets,
typically less than 200 data points.

2-248

mainvarsetnorm

MethodValue Property to select the smoothing method used
to normalize the data. Enter 'lowess' or
'runmedian'. Default is 'lowess'.

SpanValue Property to set the window size for the
smoothing method. If SpanValue is less than
1, the window size is that percentage of the
number of data points. If SpanValue is equal
to or greater than 1, the window size is of size
SpanValue. Default is 0.05, which corresponds
to a window size equal to 5% of the total
number of data points in the invariant set.

ShowplotValue Property to control the plotting of a pair of M-A
scatter plots (before and after normalization).
M is the ratio between DataX and DataY. A is
the average of DataX and DataY. Enter true to
create the pair of M-A scatter plots. Default
is false.

Description NormDataY = mainvarsetnorm(DataX, DataY) normalizes the values in
DataY, a vector of gene expression values, to a reference vector, DataX,
using the invariant set method. NormDataY is a vector of normalized
gene expression values from DataY.

Specifically, mainvarsetnorm:

• Determines the proportional rank difference (prd) for each pair of
ranks, RankX and RankY, from the two vectors of gene expression
values, DataX and DataY.

prd = abs(RankX - RankY)

• Determines the invariant set of data points by selecting data points
whose proportional rank differences (prd) are below threshold, which
is a predetermined threshold for a given data point (defined by
the ThresholdsValue property). It optionally repeats the process

2-249

mainvarsetnorm

until either no more data points are eliminated, or a predetermined
percentage of data points is reached.

The invariant set is data points with a prd < threshold.

• Uses the invariant set of data points to calculate the lowess or
running median smoothing curve, which is used to normalize the
data in DataY.

Note If DataX or DataY contains NaN values, then NormDataY will also
contain NaN values at the corresponding positions.

Tip

mainvarsetnorm is useful for correcting for dye bias in two-color
microarray data.

NormDataY = mainvarsetnorm(..., 'PropertyName',
PropertyValue, ...) defines optional properties that use property
name/value pairs in any order. These property name/value pairs are
as follows:

NormDataY = mainvarsetnorm(..., 'Thresholds',
ThresholdsValue, ...) sets the thresholds for the lowest
average rank and the highest average rank, which are used to determine
the invariant set. The rank invariant set is a set of data points whose
proportional rank difference is smaller than a given threshold. The
threshold for each data point is determined by interpolating between
the threshold for the lowest average rank and the threshold for the
highest average rank. Select these two thresholds empirically to
limit the spread of the invariant set, but allow enough data points to
determine the normalization relationship.

2-250

mainvarsetnorm

ThresholdsValue is a 1-by-2 vector [LT, HT], where LT is the threshold
for the lowest average rank and HT is threshold for the highest average
rank. Values must be between 0 and 1. Default is [0.03, 0.07].

NormDataY = mainvarsetnorm(..., 'Exclude', ExcludeValue, ...)
filters the invariant set of data points, by excluding the data points
whose average rank (between DataX and DataY) is in the highest N
ranked averages or lowest N ranked averages.

NormDataY = mainvarsetnorm(..., 'Prctile', PrctileValue, ...)
stops the iteration process when the number of data points in the
invariant set reaches N percent of the total number of input data points.
Default is 1.

Note If you do not use this property, the iteration process continues
until no more data points are eliminated.

NormDataY = mainvarsetnorm(..., 'Iterate', IterateValue, ...)
controls the iteration process for determining the invariant set of
data points. When IterateValue is true, mainvarsetnorm repeats
the process until either no more data points are eliminated, or a
predetermined percentage of data points (PrctileValue) is reached.
When IterateValue is false, performs only one iteration of the
process. Default is true.

Tip

Select false for smaller data sets, typically less than 200 data points.

NormDataY = mainvarsetnorm(..., 'Method', MethodValue, ...)
selects the smoothing method for normalizing the data. When
MethodValue is 'lowess', mainvarsetnorm uses the lowess method.
When MethodValue is 'runmedian', mainvarsetnorm uses the running
median method. Default is 'lowess'.

2-251

mainvarsetnorm

NormDataY = mainvarsetnorm(..., 'Span', SpanValue, ...) sets
the window size for the smoothing method. If SpanValue is less than
1, the window size is that percentage of the number of data points.
If SpanValue is equal to or greater than 1, the window size is of size
SpanValue. Default is 0.05, which corresponds to a window size equal
to 5% of the total number of data points in the invariant set.

NormDataY = mainvarsetnorm(..., 'Showplot',
ShowplotValue, ...) determines whether to plot a pair of
M-A scatter plots (before and after normalization). M is the ratio
between DataX and DataY. A is the average of DataX and DataY. When
ShowplotValue is true, mainvarsetnorm plots the M-A scatter plots.
Default is false.

The following example illustrates how mainvarsetnorm can correct
for dye bias or scanning differences between two channels of data
from a two-color microarray experiment. Under perfect experimental
conditions, data points with equal expression values would fall along the
M = 0 line, which represents a gene expression ratio of 1. However, dye
bias caused the measured values in one channel to be higher than the
other channel, as seen in the Before Normalization plot. Normalization
corrected the variance, as seen in the After Normalization plot.

2-252

mainvarsetnorm

Examples The following example extracts data from a GPR file and creates two
column vectors of gene expression values from different experimental
conditions. It then normalizes one of the data sets.

maStruct = gprread('mouse_a1wt.gpr');
cy3data = magetfield(maStruct, 'F635 Median');
cy5data = magetfield(maStruct, 'F532 Median');
Normcy5data = mainvarsetnorm(cy3data, cy5data);

References [1] Tseng, G.C., Oh, Min-Kyu, Rohlin, L., Liao, J.C., and Wong, W.H.
(2001) Issues in cDNA microarray analysis: quality filtering, channel

2-253

mainvarsetnorm

normalization, models of variations and assessment of gene effects.
Nucleic Acids Research. 29, 2549-2557.

[2] Hoffmann, R., Seidl, T., and Dugas, M. (2002) Profound effect
of normalization on detection of differentially expressed genes in
oligonucleotide microarray data analysis. Genome Biology. 3(7):
research 0033.1-0033.11.

See Also affyinvarsetnorm, malowess, manorm, quantilenorm

2-254

mairplot

Purpose Intensity versus ratio scatter plot for microarray signals

Syntax mairplot(X, Y, 'PropertyName', PropertyValue...)
mairplot(..., 'FactorLines', FactorLinesValue)
mairplot(..., 'Title', TitleValue)
mairplot(..., 'Labels', LabelsValue)
maimage(..., 'HandleGraphicsPropertyName' PropertyValue)
[Intensity, Ratio] = mairplot(...)
[Intensity, Ratio, H] = mairplot(...)

Arguments
X, Y Gene expression data.

FactorLines Property to specify a factor of change.

Title Property to specify a title for the plot.

Labels Property to specify labels for the plot.

HandleGraphics Property to pass optional property name/value
pairs from Handle Graphics.

Description mairplot(X, Y, 'PropertyName', PropertyValue...) creates an intensity
versus ratio scatter plot of X versus Y.

mairplot(..., 'FactorLines', FactorLinesValue) adds lines showing
a factor of N change.

mairplot(..., 'Title', TitleValue) allows you to specify a title for
the plot.

mairplot(..., 'Labels', LabelsValue) allows you to specify a cell array
of labels for the data. If labels are defined, then clicking a point on the
plot shows the label corresponding to that point.

maimage(..., 'HandleGraphicsPropertyName' PropertyValue) allows you
to pass optional Handle Graphics property name/property value pairs
to the function.

2-255

mairplot

[Intensity, Ratio] = mairplot(...) returns the intensity and ratio
values.

[Intensity, Ratio, H] = mairplot(...) returns the handle of the plot.

Examples maStruct = gprread('mouse_a1wt.gpr');
cy3data = magetfield(maStruct,'F635 Median');
cy5data = magetfield(maStruct,'F532 Median');
mairplot(cy3data,cy5data,'title','R vs G IR plot')
% Add factor lines and labels
figure
names = maStruct.Names;
mairplot(cy3data,cy5data,'title','R vs G IR plot',...
% Normalize the plot using lowess normalization
figure
mairplot(cy3data,cy5data,'title','Normalized R vs G IR plot',...

'Normalize',true,'Factorlines',2,...
'Labels',maStruct.Names)

See Also Bioinformatics Toolbox functions maboxplot, magetfield,
maimage, mainvarsetnorm, maloglog, malowess, manorm, mattest,
mavolcanoplot

2-256

maloglog

Purpose Create loglog plot of microarray data

Syntax maloglog(X, Y, 'PropertyName', PropertyValue...)
maloglog(..., 'FactorLines', N)
maloglog(..., 'Title', TitleValue)
maloglog(..., 'Labels', LabelsValues)
maloglog(..., 'HandleGraphicsName', HGValue)
H = maloglog(...)

Arguments
X A numeric array of microarray expression values from

a single experimental condition.

Y A numeric array of microarray expression values from
a single experimental condition.

N Property to add two lines to the plot showing a factor
of N change.

TitleValue A string to use as the title for the plot.

LabelsValue A cell array of labels for the data in X and Y. If you
specify LabelsValue, then clicking a data point in the
plot shows the label corresponding to that point.

Description maloglog(X, Y, 'PropertyName', PropertyValue...) creates a loglog
scatter plot of X versus Y. X and Y are numeric arrays of microarray
expression values from two different experimental conditions.

maloglog(..., 'FactorLines', N) adds two lines to the plot showing
a factor of N change.

maloglog(..., 'Title', TitleValue) allows you to specify a title for
the plot.

maloglog(..., 'Labels', LabelsValues) allows you to specify a cell
array of labels for the data. If LabelsValues is defined, then clicking a
data point in the plot shows the label corresponding to that point.

maloglog(..., 'HandleGraphicsName', HGValue) allows you to pass
optional Handle Graphics property name/property value pairs to the
function.

2-257

maloglog

H = maloglog(...) returns the handle to the plot.

Examples maStruct = gprread('mouse_a1wt.gpr');
Red = magetfield(maStruct,'F635 Median');
Green = magetfield(maStruct,'F532 Median');
maloglog(Red,Green,'title','Red vs Green');
% Add factorlines and labels
figure
maloglog(Red,Green,'title','Red vs Green',...

'FactorLines',2,'LABELS',maStruct.Names);
% Now create a normalized plot
figure
maloglog(manorm(Red),manorm(Green),'title',...

'Normalized Red vs Green','FactorLines',2,...
'LABELS',maStruct.Names);

See Also Bioinformatics Toolbox functions maboxplot, magetfiled,
mainvarsetnorm, maimage, mairplot, malowess, manorm, mattest,
mavolcanoplot

MATLAB function loglog

2-258

malowess

Purpose Smooth microarray data using Lowess method

Syntax YSmooth = malowess(X, Y)
malowess(..., 'PropertyName', PropertyValue,...)
malowess(..., 'Order', OrderValue)
malowess(..., 'Robust', RobustValue)
malowess(..., 'Span', SpanValue)

Arguments
X, Y Scatter data.

OrderValue Property to select the order of the algorithm. Enter
either 1 (linear fit) or 2 (quadratic fit). The default
order is 1.

RobustValue Property to select a robust fit. Enter either true or
false.

SpanValue Property to specify the window size. The default
value is 0.05 (5% of total points in X)

Description YSmooth = malowess(X, Y) smooths scatter data (X, Y) using the
Lowess smoothing method. The default window size is 5% of the length
of X.

malowess(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

malowess(..., 'Order', OrderValue) chooses the order of the
algorithm. Note that the MATLAB Curve Fitting Toolbox refers to
Lowess smoothing of order 2 as Loess smoothing.

malowess(..., 'Robust', RobustValue) uses a robust fit when
RobustValue is set to true. This option can take a long time to calculate.

malowess(..., 'Span', SpanValue) modifies the window size for the
smoothing function. If SpanValue is less than 1, the window size is taken
to be a fraction of the number of points in the data. If SpanValue is
greater than 1, the window is of size SpanValue.

2-259

malowess

Examples maStruct = gprread('mouse_a1wt.gpr');
cy3data = magetfield(maStruct, 'F635 Median');
cy5data = magetfield(maStruct, 'F532 Median');
[x,y] = mairplot(cy3data, cy5data);
drawnow
ysmooth = malowess(x,y);
hold on;
plot(x, ysmooth, 'rx')
ymorm = y - ysmooth;

See Also Bioinformatics Toolbox functions affyinvarsetnorm, maboxplot,
magetfield, maimage, mainvarsetnorm, mairplot, maloglog, manorm,
quantilenorm

Statistics Toolbox function robustfit

2-260

manorm

Purpose Normalize microarray data

Syntax XNorm = manorm(X)
XNorm = manorm(MAStruct, FieldName)
[XNorm, ColVal] = manorm(...)
manorm(..., 'Method', MethodValue)
manorm(..., 'Extra_Args', Extra_ArgsValue)
manorm(..., 'LogData', LogDataValue)
manorm(..., 'Percentile', PercentileValue)
manorm(..., 'Global', GlobalValue),
manorm(..., 'StructureOutput', StructureOutputValue)
manorm(..., 'NewColumnName', NewColumnNameValue)

Description XNorm = manorm(X) scales the values in each column of microarray
data (X) by dividing by the mean column intensity.

• X — Microarray data. Enter a vector or matrix.

• XNorm — Normalized microarray data.

XNorm = manorm(MAStruct, FieldName) scales the data for a field
(FieldName) for each block or print-tip by dividing each block by the
mean column intensity. The output is a matrix with each column
corresponding to the normalized data for each block.

• MAStruct — Microarray structure.

[XNorm, ColVal] = manorm(...) returns the values used to normalize
the data.

manorm(..., 'Method', MethodValue) allows you to choose the
method for scaling or centering the data. MethodValue can be 'Mean’
(default), 'Median’, 'STD' (standard deviation), 'MAD' (median absolute
deviation), or a function handle. If you pass a function handle, then
the function should ignore NaNs and must return a single value per
column of the input data.

2-261

manorm

manorm(..., 'Extra_Args', Extra_ArgsValue) allows you to pass
extra arguments to the function MethodValue. Extra_ArgsValue must
be a cell array.

manorm(..., 'LogData', LogDataValue), when LogDataValue is true,
works with log ratio data in which case the mean (or MethodValue) of
each column is subtracted from the values in the columns, instead of
dividing the column by the normalizing value.

manorm(..., 'Percentile', PercentileValue) only uses the
percentile (PercentileValue) of the data preventing large outliers from
skewing the normalization. If PercentileValue is a vector containing
two values, then the range from the PercentileValue(1) percentile to
the PercentileValue(2) percentile is used. The default value is 100,
that is to use all the data in the data set.

manorm(..., 'Global', GlobalValue), when GlobalValue is
true, normalizes the values in the data set by the global mean (or
MethodValue) of the data, as opposed to normalizing each column or
block of the data independently.

manorm(..., 'StructureOutput', StructureOutputValue), when
StructureOutputValue is true, the input data is a structure returns
the input structure with an additional data field for the normalized data.

manorm(..., 'NewColumnName', NewColumnNameValue), when using
StructureOutput, allows you to specify the name of the column that
is appended to the list of ColumnNames in the structure. The default
behavior is to prefix 'Block Normalized' to the FieldName string.

Examples maStruct = gprread('mouse_a1wt.gpr');
% Extract some data of interest.
Red = magetfield(maStruct,'F635 Median');
Green = magetfield(maStruct,'F532 Median');
% Create a log-log plot.
maloglog(Red,Green,'factorlines',true)
% Center the data.
normRed = manorm(Red);
normGreen = manorm(Green);

2-262

manorm

% Create a log-log plot of the centered data.
figure
maloglog(normRed,normGreen,'title','Normalized','factorlines',true)

% Alternatively, you can work directly with the structure
normRedBs = manorm(maStruct,'F635 Median - B635');
normGreenBs = manorm(maStruct,'F532 Median - B532');
% Create a log-log plot of the centered data. This includes some
% zero values so turn off the warning.
figure
w = warning('off','Bioinfo:maloglog:ZeroValues');
warning('off','Bioinfo:maloglog:NegativeValues');
maloglog(normRedBs,normGreenBs,'title',...

'Normalized Background-Subtracted Median Values',...
'factorlines',true)

warning(w);

See Also Bioinformatics Toolbox functions affyinvarsetnorm, maboxplot,
magetfield, mainvarsetnorm, mairplot, maloglog, malowess,
quantilenorm, rmasummary

2-263

mapcaplot

Purpose Create Principal Component plot of expression profile data

Syntax mapcaplot(Data)
mapcaplot(Data,Label)

Arguments
Data Microarray data

Label Data point labels.

Description mapcaplot(Data) creates 2D scatter plots of principal components of the
array DATA. The principal components used for the x and y data are
selected from popup menus, below each scatter plot.

Once the principal components have been plotted, a region can be
selected in either axes with the mouse. This will highlight the points
in the selected region, and the corresponding points in the other axes.
This will also display a list of the row numbers of the selected points
in the list box. Selecting an entry in the list box will display a label
with the row number in each axes, at the corresponding point. Clicking
on a point in the scatter plot will display a label with its row number
until the mouse is released.

mapcaplot(Data,Label) uses the elements of the cell array of strings
Label, instead of the row numbers, to label the data points.

Examples load filteredyeastdata
mapcaplot(yeastvalues,genes)

2-264

mapcaplot

See Also Bioinformatics Toolbox function clustergram, mattest, mavolcanoplot

2-265

mapcaplot

Statistical Toolbox function princomp

2-266

mattest

Purpose Perform two-sample, two-tailed t-test to evaluate differential expression
of genes from two experimental conditions or phenotypes

Syntax PValues = mattest(DataX, DataY)
[PValues, TScores] = mattest(DataX, DataY)
[PValues, TScores, StdDevs] = mattest(DataX, DataY)
... = mattest(..., 'Showhist', ShowhistValue, ...)
... = mattest(..., 'Showplot', ShowplotValue, ...)
... = mattest(..., 'Labels', LabelsValue, ...)

Arguments
DataX Matrix of gene expression values (natural or log

scale) where each row corresponds to a gene (probe
set) and each column corresponds to expression
values from a single experimental condition.

DataY Matrix of gene expression values (natural or log
scale) where each row corresponds to a gene (probe
set) and each column corresponds to expression
values from a single experimental condition.

ShowhistValue Property to display histograms of t-score
distributions and p-value distributions. Enter
either true to display histograms or false.
Default is false.

ShowplotValue Property to display a normal t-score quantile plot.
Enter true to display the plot, or false. Default
is false. In the t-score quantile plot, data points
with t-scores > (1 - 1/(2N)) or < 1/(2N) display
with red circles. N is the total number of genes.

LabelsValue Cell array of labels (typically gene names or probe
set IDs) for each row in DataX and DataY. The
labels display if you click a data point in the t-score
quantile plot.

2-267

mattest

Description PValues = mattest(DataX, DataY) compares the gene expression
profiles in DataX and DataY and returns a p-value for each gene. DataX
and DataY are matrices of gene expression values, in which each row
corresponds to a gene, and each column corresponds to expression
values. DataX contains data from one experimental condition and DataY
contains data from a different experimental condition. DataX and DataY
must have the same number of rows and are assumed to be normally
distributed in each class with equal variances. PValues is a column
vector of p-values for each gene.

[PValues, TScores] = mattest(DataX, DataY) also returns a t-score
for each gene in DataX and DataY. TScores is a column vector of t-scores
for each gene.

[PValues, TScores, StdDevs] = mattest(DataX, DataY) also returns
the unpooled estimates of the population standard deviations for each
gene in DataX and DataY. StdDevs is a column vector of standard
deviations for each gene across both data sets.

... = mattest(..., 'PropertyName', PropertyValue, ...) defines
optional properties that use property name/value pairs in any order.
These property name/value pairs are as follows:

... = mattest(..., 'Showhist', ShowhistValue, ...) controls
the display of histograms of t-score distributions and p-value
distributions. When ShowhistValue is true, mattest displays
histograms. Default is false.

2-268

mattest

... = mattest(..., 'Showplot', ShowplotValue, ...) controls
the display of a normal t-score quantile plot. When ShowplotValue is
true, mattest displays a quantile-quantile plot. Default is false. In
the t-score quantile plot, the black diagonal line represents the sample
quantile being equal to the theoretical quantile. Data points of genes
considered to be differentially expressed lie farther away from this line.
Specifically, data points with t-scores > (1 - 1/(2N)) or < 1/(2N)
display with red circles. N is the total number of genes.

2-269

mattest

... = mattest(..., 'Labels', LabelsValue, ...) controls the
display of labels when you click a data point in the t-score quantile plot.
LabelsValue is a cell array of labels (typically gene names or probe set
IDs) for each row in DataX and DataY.

Examples 1 Load a MAT file, included with the Bioinformatics Toolbox, which
contains Affymetrix data variables, including dependentData and
independentData, two matrices of gene expression values from two
experimental conditions.

load prostatecancerexpdata

2-270

mattest

2 Use the mattest function to calculate p-values for the gene
expression values in the two matrices.

pvalues = mattest(dependentData, independentData);

The prostatecancerexpdata.mat file used in the previous example
contains data from Best et al., 2005.

References [1] Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and
Vingron, M. (2002). Variance stabilization applied to microarray
data calibration and to the quantification of differential expression.
Bioinformatics 18 Suppl1, S96-S104.

[2] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823-6834.

See Also maboxplot, mainvarsetnorm, mairplot, maloglog, malowess, manorm,
mavolcanoplot, rmasummary

2-271

mavolcanoplot

Purpose Create significance versus gene expression ratio (fold change) scatter
plot of microarray data

Syntax mavolcanoplot(DataX, DataY, PValues)
SigStructure = mavolcanoplot(DataX, DataY, PValues)
... mavolcanoplot(..., 'Labels', LabelsValue, ...)
... mavolcanoplot(..., 'LogTrans', LogTransValue, ...)
... mavolcanoplot(..., 'PCutoff', PCutoffValue, ...)
... mavolcanoplot(..., 'Foldchange', FoldchangeValue, ...)

Arguments
DataX Matrix or vector of gene expression values

from a single experimental condition. If
DataX is a matrix, each row is a gene,
each column is a sample, and an average
expression value is calculated for each
gene.

Note If the values in DataX are natural
scale, use the LogTrans property to
convert them to log 2 scale.

DataY Matrix or vector of gene expression values
from a single experimental condition. If a
matrix, each row is a gene, each column
is a sample, and an average expression
value is calculated for each gene.

Note If the values in DataY are natural
scale, use the LogTrans property to
convert them to log 2 scale.

2-272

mavolcanoplot

PValues Vector of p-values for each gene in data
sets from two different experimental
conditions.

LabelsValue Cell array of labels (typically gene names
or probe set IDs) for the data. After
creating the plot, you can click a data
point to display the label associated with
it. If you do not provide a LabelsValue,
data points are labeled with row numbers
from DataX and DataY.

LogTransValue Property to control the conversion of data
in DataX and DataY from natural scale to
log 2 scale. Enter true to convert data to
log 2 scale, or false. Default is false,
which assumes data is already log 2 scale.

PCutoffValue Lets you specify a cutoff p-value to
define data points that are statistically
significant. This value is displayed
graphically as a horizontal line on the
plot. Default is 0.05, which is equivalent
to 1.3010 on the –log10 (p-value) scale.

Note You can also change the p-value
cutoff interactively after creating the plot.

FoldchangeValue Lets you specify a ratio fold change to
define data points that are differentially
expressed. Default is 2, which corresponds
to a ratio of 1 and –1 on a log2 (ratio) scale.

2-273

mavolcanoplot

Note You can also change the fold change
interactively after creating the plot.

Description mavolcanoplot(DataX, DataY, PValues) creates a scatter plot of gene
expression data, plotting significance versus fold change of gene
expression ratios. It uses the average gene expression values from two
data sets, DataX and DataY, for each gene in the data sets. It plots
significance as the –log10 (p-value) from the vector, PValues. DataX and
DataY can be vectors or matrices.

SigStructure = mavolcanoplot(DataX, DataY, PValues) returns a
structure containing information for genes that are considered to be
both statistically significant (above the p-value cutoff) and significantly
differentially expressed (outside of the fold change values). The fields
within SigStructure are sorted by p-value and include:

• Name

• PCutoff

• FCThreshold

• GeneLabels

• PValues

• FoldChanges

... mavolcanoplot(..., 'PropertyName', PropertyValue, ...)
defines optional properties that use property name/value pairs in any
order. These property name/value pairs are as follows:

... mavolcanoplot(..., 'Labels', LabelsValue, ...) lets you provide
a cell array of labels (typically gene names or probe set IDs) for the data.
After creating the plot, you can click a data point to display the label

2-274

mavolcanoplot

associated with it. If you do not provide a LabelsValue, data points are
labeled with row numbers from DataX and DataY.

... mavolcanoplot(..., 'LogTrans', LogTransValue, ...) controls
the conversion of data from DataX and DataY to log2 scale. When
LogTransValue is true, mavolcanoplot converts data to log2 scale.
Default is false, which assumes the data is already log2 scale.

... mavolcanoplot(..., 'PCutoff', PCutoffValue, ...) lets you
specify a p-value cutoff to define data points that are statistically
significant. This value displays graphically as a horizontal line on
the plot. Default is 0.05, which is equivalent to 1.3010 on the –log10
(p-value) scale.

Note You can also change the p-value cutoff interactively after creating
the plot.

... mavolcanoplot(..., 'Foldchange', FoldchangeValue, ...) lets you
specify a ratio fold change to define data points that are differentially
expressed. Fold changes display graphically as two vertical lines on
the plot. Default is 2, which corresponds to a ratio of 1 and –1 on a
log2 (ratio) scale.

Note You can also change the fold change interactively after creating
the plot.

2-275

mavolcanoplot

The volcano plot displays the following:

• –log10 (p-value) versus log2 (ratio) scatter plot of genes

• Two vertical fold change lines at a fold change level of 2, which
corresponds to a ratio of 1 and –1 on a log2 (ratio) scale. (Lines will
be at different fold change levels, if you used the 'Foldchange'
property.)

• One horizontal line at the 0.05 p-value level, which is equivalent to
1.3010 on the –log10 (p-value) scale. (The line will be at a different
p-value level, if you used the 'PCutoff' property.)

2-276

mavolcanoplot

• Data points for genes that are considered both statistically significant
(above the p-value line) and differentially expressed (outside of the
fold changes lines) appear in orange.

After you display the volcano scatter plot, you can interactively:

• Adjust the vertical fold change lines by click-dragging one line or
entering a value in the Fold Change text box.

• Adjust the horizontal p-value cutoff line by click-dragging or entering
a value in the p-value Cutoff text box.

• Display labels for data points by clicking a data point.

• Select a gene from the Up Regulated or Down Regulated list to
highlight the corresponding data point in the plot. Press and hold
Ctrl or Shift to select multiple genes.

• Zoom the plot by selecting Tools > Zoom In or Tools > Zoom Out.

• View lists of significantly up-regulated and down-regulated genes and
their associated p-values, and optionally, export the labels, p-values,
and fold changes to a structure in the MATLAB Workspace.

Examples 1 Load a MAT file, included with the Bioinformatics Toolbox, which
contains Affymetrix data variables, including dependentData and
independentData, two matrices of gene expression values from two
experimental conditions.

load prostatecancerexpdata

2 Use the mattest function to calculate p-values for the gene
expression values in the two matrices.

pvalues = mattest(dependentData, independentData);

2-277

mavolcanoplot

3 Using the two matrices, the pvalues calculated by mattest, and the
probesetIDs column vector of labels provided, use mavolcanoplot to
create a significance versus gene expression ratio scatter plot of the
microarray data from the two experimental conditions.

mavolcanoplot(dependentData, independentData, pvalues,...
'Labels', probesetIDs)

The prostatecancerexpdata.mat file used in the previous example
contains data from Best et al., 2005.

References [1] Cui, X., Churchill, G.A. (2003). Statistical tests for differential
expression in cDNA microarray experiments. Genome Biology. 4, 210.

[2] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823-6834.

See Also maboxplot, maimage, mainvarsetnorm, mairplot, maloglog, malowess,
manorm, mapcaplot, mattest

2-278

msalign

Purpose Align peaks in mass spectrum to reference peaks

Syntax YOut = msalign(MZ, Y, R)
msalign(..., 'PropertyName', PropertyValue,...)
msalign(..., 'Weights', WeightsValue)
msalign(..., 'Range', RangeValue)
msalign(..., 'WidthOfPulses', WidthOfPulsesValue)
msalign(..., 'WindowSizeRatio', WindowSizeRatioValue)
msalign(..., 'Iterations', IterationsValue)
msalign(..., 'GridSteps', GridStepsValue)
msalign(..., 'SearchSpace', SearchSpaceValue)
[YOut,ROut] = msalign(..., 'Group', GroupValue),
msalign(..., 'ShowPlot', ShowPlotValue)

Arguments MZ Mass/charge vector with the range of ions in the
spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

R Reference mass vector with a list of known masses in
the sample spectrum.

Description YOut = msalign(MZ, Y, R)aligns a raw mass spectrum (Y) by scaling
and shifting the mass/charge scale (MZ) so that the cross-correlation
between the spectrum (Y) and a synthetic spectrum is maximum. A
synthetic spectrum is built with Gaussian pulses centered at the masses
specified by the reference mass vector (R). Once the new mass/charge
scale is determined, a new spectrum (YOut) is calculated by piecewise
cubic interpolating and shifting the new spectrum from the original
mass/charge vector (MZ). This method preserves the shape of the peaks.

msalign uses an iterative grid search until it finds the best scale and
shift factors for every spectrum.

2-279

msalign

Note The algorithm works best with three to five marker masses
that you know will appear in the spectrum. If you use a single
marker mass (a single internal standard), there is a possibility of
picking a peak between the marker and sample peak for that marker
as msalign scales and shifts the MZ vector. If you only require to
shift the MZ vector, you may prefer to useYOut = interp1(MZ,
MZ-(MarkerMass-PeakPosition, Y).

msalign(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

msalign(..., 'Weights', WeightsValue)specifies the relative weights
for every mass in the reference mass vector (R). The size of the weight
vector (WeightsValue) must be the same as the reference mass vector
(R). The default value is ones(size(R)) with a range of 0 to1, but you
can use any range. If you have a small number of reference masses, you
might want to change the weights.

msalign(..., 'Range', RangeValue)specifies the lower and upper
bound for the allowable range in m/z units to shift any of the mass
peaks. The default value is [-100 100]. Use these values to tune the
robustness of the algorithm. Ideally, you should only try to correct small
shifts by keeping the bounds small.

Note You can try to correct larger shifts by increasing the bounds, but
you might also pick the wrong peaks to be aligned.

msalign(..., 'WidthOfPulses', WidthOfPulsesValue) specifies the
width (WidthOfPulsesValue) in m/z units for all the Gaussian pulses
used to build the correlating synthetic spectrum. WidthOfPulsesValue is
at the point where the Gaussian pulse reaches 60.65% of its maximum.
The default value is 10. WidthOfPulsesValue may also be a function
handle. The function is evaluated at the respective m/z values and
returns a variable width for the pulses. Its evaluation should give

2-280

msalign

reasonable values between 0 and max(abs(Range)); otherwise, the
function errors out.

Note Tuning the spread of the Gaussian pulses controls a tradeoff
between robustness (wider pulses) and precision (narrower pulses),
but the spread is unrelated to the shape of the observed peaks in the
spectrum.

msalign(..., 'WindowSizeRatio', WindowSizeRatioValue) specifies
a scaling value that determines the size of the window around
every alignment peak. The synthetic spectrum is correlated to the
sample spectrum only within these regions, which saves computation
time. Size of the window is given by WidthOfPulsesValue *
WindowSizeRatioValue in m/z units. The default value is 2.5, which
means at the limits of the window, the Gaussian pulses have a value of
4.39% of their maximum.

msalign(..., 'Iterations', IterationsValue) specifies the number
of refining iterations. At every iteration the search grid is scaled down
to improve the estimates. The default value is 5.

msalign(..., 'GridSteps', GridStepsValue) specifies the number
of steps for the search grid. For example, at every iteration the search
area is divided by GridStepsValue^2. The default value is 20.

msalign(..., 'SearchSpace', SearchSpaceValue) specifies the type
of search space. Enter either 'regular' (evenly spaced lattice) or
'latin' (random latin hypercube with GridStepsValue^2 samples).
The default value is 'regular'.

[YOut,ROut] = msalign(..., 'Group', GroupValue), when
GroupValue is true and Y contains more than one spectrum, updates the
original peak locations so that the actual movement of the peaks is
minimized. ROut contains the reference masses with the updated ion
peak locations. Use this property when you are uncertain about the
values for the reference masses. The default value is false.

2-281

msalign

msalign(..., 'ShowPlot', ShowPlotValue) plots the original and the
aligned spectrum over the reference masses (R). When msalign is called
without output arguments, the spectra are plotted unless ShowPlotValue
is false. When ShowPlotValues is true, only the first spectrum in Y is
plotted. The default value is false.

Example 1 1 Load sample data, reference masses, and parameter data for
synthetic peak width.

load sample_lo_res
R = [3991.4 4598 7964 9160];
W = [60 100 60 100];

2 Display a color image of the mass spectra before alignment.

msheatmap(MZ_lo_res,Y_lo_res,'markers',R,'limit',[3000 10000])
title('before alignment')

2-282

msalign

3 Align spectra with reference masses and display a color image of
mass spectra after alignment.

YA = msalign(MZ_lo_res,Y_lo_res,R,'weights',W);
msheatmap(MZ_lo_res,YA,'markers',R,'limit',[3000 10000])
title('after alignment')

Example 2 1 Align a spectrum with a single reference peak. Load sample data and
view the first sample spectrum.

load sample_lo_res
MZ = MZ_lo_res
Y = Y_lo_res(:,1)
msviewer(MZ, Y)

2-283

msalign

2 Select a reference peak by zooming and right-clicking a peak.

3 Shift a spectrum by the difference between the known reference mass
(RP) and the experimental mass (SP).

RP = 4000;
SP = 4050.33;
YOut = interp1(MZ, MZ-(RP-SP, Y);

The plot below shows the original spectrum on top and the shifted
spectrum on the bottom.

2-284

msalign

See Also Bioinformatics Toolbox functions msbackadj, msheatmap, mslowess,
msnorm, msresample, mssgolay, msviewer

2-285

msbackadj

Purpose Correct baseline of mass spectrum

Syntax Yout = msbackadj(MZ, Y)
msbackadj(..., 'PropertyName', PropertyValue,...)
msbackadj(..., 'WindowSize', WindowSizeValue)
msbackadj(..., 'StepSize', StepSizeValue)
msbackadj(..., 'RegressionMethod', RegressionMethodValue)
msbackadj(..., 'EstimationMethod', EstimationMethodValue)
msbackadj(..., 'SmoothMethod', SmoothMethodValue)
msbackadj(..., 'QuantileValue', QuantileValueValue)
msbackadj(..., 'PreserveHeights', PreserveHeightsValue)
msbackadj(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Range of mass/charge ions. Enter a vector with the

range of ions in the spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = msbackadj(MZ, Y) adjusts the variable baseline of a raw mass
spectrum by following three steps:

1 Estimates the baseline within multiple shifted windows of width
200 m/z

2 Regresses the varying baseline to the window points using a spline
approximation

3 Adjusts the baseline of the spectrum (Y)

msbackadj(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

2-286

msbackadj

msbackadj(..., 'WindowSize', WindowSizeValue) specifies the width
for the shifting window. WindowSizeValue can also be a function handler.
The function is evaluated at the respective MZ values and returns a
variable width for the windows. This option is useful for cases where
the resolution of the signal is dissimilar at different regions of the
spectrogram. The default value is 200 (baseline point estimated for
windows with a width of 200 m/z).

Note The result of this algorithm depends on carefully choosing the
window size and the step size. Consider the width of your peaks in
the spectrum and the presence of possible drifts. If you have wider
peaks towards the end of the spectrum, you may want to use variable
parameters.

msbackadj(..., 'StepSize', StepSizeValue)specifies the steps for
the shifting window. The default value is 200 m/z (baseline point is
estimated for windows placed every 200 m/z). StepSizeValue may also
be a function handle. The function is evaluated at the respective m/z
values and returns the distance between adjacent windows.

msbackadj(..., 'RegressionMethod', RegressionMethodValue)
specifies the method to regress the window estimated points to a soft
curve. Enter 'pchip' (shape-preserving piecewise cubic interpolation),
'linear'(linear interpolation), or 'spline'(spline interpolation). The
default value is 'pchip'.

msbackadj(..., 'EstimationMethod', EstimationMethodValue)
specifies the method for finding the likely baseline value in every
window. Enter 'quantile' (quantile value is set to 10%) or 'em'
(assumes a doubly stochastic model). With em, every sample is
the independent and identically distributed (i.i.d.) draw of any of
two normal distributed classes (background or peaks). Because
the class label is hidden, the distributions are estimated with an
Expectation-Maximization algorithm. The ultimate baseline value is
the mean of the background class.

2-287

msbackadj

msbackadj(..., 'SmoothMethod', SmoothMethodValue) specifies the
method for smoothing the curve of estimated points and eliminating
the effects of possible outliers. Enter 'none', 'lowess' (linear fit),
'loess' (quadratic fit), 'rlowess' (robust linear), or 'rloess' (robust
quadratic fit). Default value is 'none'.

msbackadj(..., 'QuantileValue', QuantileValueValue) specifies
the quantile value. The default value is 0.10.

msbackadj(..., 'PreserveHeights', PreserveHeightsValue), when
PreserveHeightsValue is true, sets the baseline subtraction mode to
preserve the height of the tallest peak in the signal. The default value
is false and peak heights are not preserved.

msbackadj(..., 'ShowPlot', ShowPlotValue) plots the baseline
estimated points, the regressed baseline, and the original spectrum.
When msbackadj is called without output arguments, the spectra are
plotted unless ShowPlotValue is false. When ShowPlotValue is true,
only the first spectrum in Y is plotted. ShowPlotValue can also contain
an index to one of the spectra in Y.

Example 1 Load sample data.

load sample_lo_res

2 Adjust the baseline for a group of spectra and show only the third
spectrum and its estimated background.

YB = msbackadj(MZ_lo_res,Y_lo_res,'SHOWPLOT',3);

2-288

msbackadj

3 Plot the estimated baseline for the fourth spectrum in Y_lo_res using
an anonymous function to describe an m/z dependent parameter.

wf = @(mz) 200 + .001 .* mz;
msbackadj(MZ_lo_res,Y_lo_res(:,4),'STEPSIZE',wf);

2-289

msbackadj

See Also Bioinformatics Toolbox functions msalign, mslowess, msheatmap,
msnorm, msresample, mssgolay, msviewer

2-290

mslowess

Purpose Smooth mass spectrum using nonparametric method

Syntax Yout = mslowess(MZ, Y, 'PropertyName', PropertyValue...)
mslowess(..., 'Order', OrderValue)
mslowess(..., 'Span', SpanValue)
mslowess(..., 'Kernel', KernelValue)
mslowess(..., 'RobustIterations', RobustIterationsValue)
mslowess(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = mslowess(MZ, Y, 'PropertyName', PropertyValue...)
smoothes a mass spectrum (Y) using a locally weighted linear regression
(lowess) method with a default span of 10 samples.

Note 1) mslowess assumes that a mass/charge vector (MZ) might not
be uniformly spaced. Therefore, the sliding window for smoothing is
centered using the closest samples in terms of the MZ value and not
in terms of the MZ indices.

2) When the vector MZ does not have repeated values or NaNs, the
algorithm is approximately twice as fast.

mslowess(..., 'Order', OrderValue) specifies the order (OrderValue)
of the Lowess smoother. Enter 1 (linear polynomial fit or Lowess),
2 (quadratic polynomial fit or Loess), or 0 (equivalent to a weighted
local mean estimator and presumably faster because only a mean

2-291

mslowess

computation is performed instead of a least squares regression). The
default value is 1.

Note The MATLAB Curve Fitting Toolbox also refers to Lowess
smoothing of order 2 as Loess smoothing.

mslowess(..., 'Span', SpanValue) specifies the window size for the
smoothing kernel. If SpanValue is greater than 1, the window is equal to
SpanValue number of samples independent of the mass/charge vector
(MZ). The default value is 10 samples. Higher values will smooth the
signal more at the expense of computation time. If SpanValue is less
than 1, the window size is taken to be a fraction of the number of points
in the data. For example, when SpanValue is 0.005, the window size is
equal to 0.50% of the number of points in MZ.

mslowess(..., 'Kernel', KernelValue) selects the function
(KernelValue) for weighting the observed ion intensities. Samples close
to the MZ location being smoothed have the most weight in determining
the estimate. Enter

'tricubic' (default) (1 - (dist/dmax).^3).^3
'gaussian' exp(-(2*dist/dmax).^2)
'linear' 1-dist/dmax

mslowess(..., 'RobustIterations', RobustIterationsValue)
specifies the number of iterations (RobustValue) for a robust fit. If
RobustIterationsValue is 0 (default), no robust fit is performed. For
robust smoothing, small residual values at every span are outweighed
to improve the new estimate. 1 or 2 robust iterations are usually
adequate while, larger values might be computationally expensive.

2-292

mslowess

Note For a uniformly spaced MZ vector, a nonrobust smoothing with
Order equal to 0 is equivalent to filtering the signal with the kernel
vector.

mslowess(..., 'ShowPlot', ShowPlotValue)plots the smoothed
spectrum over the original spectrum. When mslowess is called without
output arguments, the spectra are plotted unless ShowPlotValue is
false. When ShowPlotValue is true, only the first spectrum in Y is
plotted. ShowPlotValue can also contain an index to one of the spectra
in Y.

Example 1 Load sample data.

load sample_lo_res

2 Smooth spectrum and draw figure with unsmoothed and smoothed
spectra.

YS = mslowess(MZ_lo_res,Y_lo_res(:,1),'Showplot',true);

2-293

mslowess

2-294

mslowess

See Also Bioinformatics Toolbox functions msalign, msbackadj, msheatmap,
msheatmap,msnorm, msresample, mssgolay, msviewer

2-295

msnorm

Purpose Normalize set of mass spectra

Syntax Yout = msnorm(MZ, Y)
[Yout, NormParameters]
= msnorm(...)
msnorm(MZ, NewY, NormParameters)
msnorm(..., 'PropertyName', PropertyValue,...)
msnorm(..., 'Quantile', QuantileValue)
msnorm(..., 'Limits', LimitsValue)
msnorm(..., 'Consensus', ConsensusValue)
msnorm(..., 'Method', MethodValue)
msnorm(..., 'Max', MaxValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = msnorm(MZ, Y) normalizes a group of mass spectra by
standardizing the area under the curve (AUC) to the group median.

[Yout, NormParameters] = msnorm(...) returns a structure with the
parameters to normalize another group of spectra.

msnorm(MZ, NewY, NormParameters) uses the parameter information
from a previous normalization (NormParameters) to normalize a new
set of spectra (NewY) with the MZ positions and output scale from the
previous normalization. NormParameters is a structure created by
msnorm. If a consensus proportion (ConsensusValue) was given in
the previous normalization, no new MZ positions are selected, and
normalization is performed using the same MZ positions.

msnorm(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-296

msnorm

msnorm(..., 'Quantile', QuantileValue)specifies a 1-by-2 vector
with the quantile limits for reducing the set of MZ values. For example,
when QuantileValue is [0.9 1], only the largest 10% of ion intensities in
every spectrum are used to compute the AUC. When QuantileValue is
a scalar, the scalar value represents the lower quantile limit and the
upper quantile limit is set to 1. The default value is [0 1] (use the
whole area under the curve, AUC).

msnorm(..., 'Limits', LimitsValue) specifies a 1-by-2 vector with
an MZ range for picking normalization points. This parameter is useful
to eliminate low-mass noise from the AUC calculation. The default
value is [1, max(MZ)].

msnorm(..., 'Consensus', ConsensusValue) selects MZ positions with
a consensus rule to include an MZ position into the AUC. Its ion intensity
must be within the quantile limits of at least part (ConsensusValue) of
the spectra in Y. The same MZ positions are used to normalize all the
spectrums. Enter a scalar between 0 and 1.

Use the Consensus property to eliminate low-intensity peaks and noise
from the normalization.

msnorm(..., 'Method', MethodValue) selects a method for
normalizing the AUC of every spectrum. Enter either 'Median'
(default) or 'Mean'.

msnorm(..., 'Max', MaxValue), after individually normalizing every
spectrum, scales each spectrum to an overall maximum intensity (Max).
Max is a scalar. if omitted, no postscaling is performed. If QuantileValue
is [1 1], then a single point (peak height of the tallest peak) is
normalized to Max.

Example 1 1 Load sample data and plot one of the spectra.

load sample_lo_res;
Y = Y_lo_res(:,[1 2 5 6]);
MZ = MZ_lo_res;
plot(MZ, Y(:, 4));

2-297

msnorm

2 Normalize the AUC of every spectrum to its median, eliminating
low-mass noise, and post-rescaling such that the maximum intensity
is 100.

Y1 = msnorm(MZ,Y,'Limits',[1000 inf],'Max',100);
plot(MZ, Y1(:, 4));

2-298

msnorm

3 Normalize the ion intensity of every spectrum to the maximum
intensity of the single highest peak from any of the spectra in the
range above 100 m/z.

Y2 = msnorm(MZ,Y,'QUANTILE', [1 1],'LIMITS',[1000 inf]);

Example 2 1 Select MZ regions where the intensities are within the third quartile
in at least 90% of the spectrograms.

[Y3,S] = msnorm(MZ,Y,'Quantile',[0.5 0.75],'Consensus',0.9);

2 Use the same MZ regions to normalize another set of spectrograms.

Y4 = msnorm(MZ,Y,S);

See Also Bioinformatics Toolbox functions msalign, msbackadj, msheatmap,
mslowess, msresample, mssgolay, msviewer

2-299

msheatmap

Purpose Color image for set of spectra

Syntax msheatmap(MZ, Y)
msheatmap(..., 'PropertyName', PropertyValue,...)
msheatmap(..., 'Markers', MarkersValue)
msheatmap(..., 'Limits', LimitsValues)
msheatmap(..., 'Group', GroupValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description msheatmap(MZ, Y) shows a heatmap image of the spectra in Y.

msheatmap(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

msheatmap(..., 'Markers', MarkersValue) specifies a list of markers
with positions marked along the top axis. The default value is [].

msheatmap(..., 'Limits', LimitsValues) specifies a [2x1] vector
with the mass/charge range for the heatmap image.

msheatmap(..., 'Group', GroupValue) specifies the class label
for every spectrum used to group the rows of the heatmap image.
GroupValue can be a numeric vector or a cell array of strings with the
same number of elements as there are spectra in Y.

Examples 1 Load sample data.

load sample_lo_res
M = [3991.4 4598 7964 9160];
msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'limit',[3000 10000])

2-300

msheatmap

2 Plot heatmap.

msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'group',[1 1 2 2 1 1 2 2]

See Also Bioinformatics Toolbox functions msalign, msbackadj, mslowess,
msnorm, msresample, mssgolay, msviewer

2-301

msresample

Purpose Resample mass spectrometry signal

Syntax [MZout, Yout] = msresample(MZ, Y, N)
msresample(..., 'PropertyName', PropertyValue,...)
msresample(..., 'Uniform', UniformValue)
msresample(..., 'Range', RangeValue)
msresample(..., 'Missing', MissingValue)
msresample(..., 'Window', WindowValue)
msresample(..., 'Cutoff', CutoffValue)
msresample(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

N Total number of samples.

Description [MZout, Yout] = msresample(MZ, Y, N) resamples a raw mass
spectrum (Y). The output spectrum will have N samples with a spacing
that increases linearly within the range [min(MZ) max(MZ)]. MZ can be
a linear or a quadratic function of its index. When input arguments are
set such that down-sampling takes place, msresample applies a lowpass
filter before resampling to minimize aliasing.

For the antialias filter, msresample uses a linear-phase FIR filter with
a least-squares error minimization. The cu-off frequency is set by the
largest down-sampling ratio when comparing the same regions in the
MZ and MZout vectors.

Note msresample is particularly useful when you have spectra with
different mass/charge vectors and you want to match the scales.

2-302

msresample

msresample(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

msresample(..., 'Uniform', UniformValue), when UniformValue is
true, forces the vector MZ to be uniformly spaced. The default value is
false.

msresample(..., 'Range', RangeValue) specifies a 1-by-2 vector with
the mass/charge range for the output spectrum (Yout). RangeValue
must be within [min(MZ) max(MZ)]. The default value is the full range
[min(MZ) max(MZ)].

msresample(..., 'Missing', MissingValue), when MissingValue is
true, analyzes the mass/charge vector (MZ) for dropped samples. The
default value is false. If the down-sample factor is large, checking
for dropped samples might not be worth the extra computing time.
Dropped samples can only be recovered if the original MZ values follow a
linear or a quadratic function of the MZ vector index.

msresample(..., 'Window', WindowValue) specifies the window used
when calculating parameters for the lowpass filter. Enter 'Flattop',
'Blackman', 'Hamming’, or 'Hanning'. The default value is 'Flattop'.

msresample(..., 'Cutoff', CutoffValue) specifies the cutoff
frequency. Enter a scalar value between 0 and 1 (Nyquist frequency
or half the sampling frequency). By default, msresample estimates
the cutoff value by inspecting the mass/charge vectors (MZ, MZout).
However, the cutoff frequency might be underestimated if MZ has
anomalies.

msresample(..., 'ShowPlot', ShowPlotValue) plots the original and
the resampled spectrum. When msresample is called without output
arguments, the spectra are plotted unless ShowPlotValue is false.
When ShowPlotValue is true, only the first spectrum in Y is plotted.
ShowPlotValue can also contain an index to one of the spectra in Y.

Examples 1 Load mass spectrometry data and extract m/z and intensity value
vectors

load sample_hi_res;

2-303

msresample

mz = MZ_hi_res;
y = Y_hi_res;

2 Plot original data to a lower resolution.

plot(mz, y, '.')

MATLAB draws a figure.

3 Resample data

[mz1,y1] = msresample(mz, y, 10000, 'range',[2000 max(mz)]);

4 Plot resampled data

plot(mz1,y1,'.')

MATLAB draws a figure with the down sampled data.

2-304

msresample

See Also The Bioinformatics Toolbox functions msalign, msbackadj, msheatmap,
mslowess, msnorm, mssgolay, msviewer

2-305

mssgolay

Purpose Smooth mass spectrum with least-squares polynomial

Syntax Yout = mssgolay(MZ, Y)
mssgolay(..., 'PropertyName', PropertyValue,...)
mssgolay(..., 'Span', SpanValue)
mssgolay(..., 'Degree', DegreeValue)
mssgolay(..., 'ShowPlot', ShowPlotValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description Yout = mssgolay(MZ, Y) smoothes a raw mass spectrum (Y) using a
least squares digital polynomial filter (Savitzky and Golay filters). The
default span or frame is 15 samples.

mssgolay(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

mssgolay(..., 'Span', SpanValue) modifies the frame size for the
smoothing function. If SpanValue is greater than 1, the window is the
size of SpanValue in samples independent of the MZ vector. Higher values
will smooth the signal more with an increase in computation time. If
SpanValue is less than 1, the window size is a fraction of the number of
points in the data (MZ). For example, if SpanValue is 0.05, the window
size is equal to 5% of the number of points in MZ.

2-306

mssgolay

Note 1) The original algorithm by Savitzky and Golay assumes a
uniformly spaced mass/charge vector (MZ), while mssgolay also allows
one that is not uniformly spaced. Therefore, the sliding frame for
smoothing is centered using the closest samples in terms of the MZ value
and not in terms of the MZ index.

2) When the vector MZ does not have repeated values or NaNs, the
algorithm is approximately twice as fast.

3) When the vector MZ is evenly spaced, the least-squares fitting
is performed once so that the spectrum is filtered with the same
coefficients, and the speed of the algorithm increases considerably.

4) If the vector MZ is evenly spaced and SpanValue is even, Span is
incriminated by 1 to include both edge samples in the frame.

mssgolay(..., 'Degree', DegreeValue) specifies the degree of the
polynomial (DegreeValue) fitted to the points in the moving frame. The
default value is 2. DegreeValue must be smaller than SpanValue.

mssgolay(..., 'ShowPlot', ShowPlotValue) plots smoothed
spectra over the original. When mssgolay is called without output
arguments, the spectra are plotted unless ShowPlotValue is false.
When ShowPlotValue is true, only the first spectrum in Y is plotted.
ShowPlotValue can also contain an index to one of the spectra in Y.

Examples load sample_lo_res
YS = mssgolay(MZ_low_res, Y_low_res(:,1));
plot(MZ,[Y(:,1) YS])

See Also Bioinformatics Toolbox functions msalign, msbackadj, msheatmap,
mslowess, msnorm, msresample, msviewer

2-307

msviewer

Purpose Explore MS spectrum or set of spectra

Syntax msviewer(MZ, Y)
msviewer(..., 'Markers', MarkersValue)
msviewer(..., 'Group', GroupValue)

Arguments
MZ Mass/charge vector with the range of ions in the

spectra.

Y Ion intensity vector with the same length as the
mass/charge vector (MZ). Y can also be a matrix with
several spectra that share the same mass/charge (MZ)
range.

Description msviewer(MZ, Y) creates a GUI to display and explore a mass spectrum
(Y).

msviewer(..., 'Markers', MarkersValue)specifies a list of marker
positions from the mass/charge vector (MZ) for exploration and easy
navigation. Enter a column vector with MZ values.

msviewer(..., 'Group', GroupValue) specifies a class label for
every spectrum with a different color for every class. Enter a column
vector of size [numSpectra x 1] with integers. The default value is
[numSpectra].

MSViewer GUI features include the following:

• Plot mass spectra. The spectra are plotted with different colors
according to their class labels.

• An overview displays a full spectrum, and a box indicates the region
that is currently displayed in the main window.

• Five different zoom in options, one zoom out option, and a reset view
option resize the spectrum.

• Add/focus/move/delete marker operations

2-308

msviewer

• Import/Export markers from/to MATLAB workspace

• Print and preview the spectra plot

• Print the spectra plot to a MATLAB figure window

MSViewer has five components:

• Menu bar: File, Tools, Window, and Help

• Toolbar: Zoom XY, Zoom X, Zoom Y, Reset view, Zoom out, and Help

• Main window: display the spectra

• Overview window: display the overview of a full spectrum (the
average of all spectra in display)

• Marker control panel: a list of markers, Add marker, Delete marker,
up and down buttons

Examples 1 Load and plot sample data

load sample_lo_res
msviewer(MZ_lo_res, Y_lo_res)

2 Add a marker by pointing to a mass peak, right-clicking, and then
clicking Add Marker.

3 From the File menu, select

• Import Markers from Workspace — Opens the Import Markers
From MATLAB Workspace dialog. The dialog should display a list
of double Mx1 or 1xM variables. If the selected variable is out of
range, the viewer displays an error message

• Export Markers to Workspace — Opens the Export Markers to
MATLAB Workspace dialog. You can enter a variable name for the
markers. All markers are saved. If there is no marker available,
this menu item should be disabled.

2-309

msviewer

• Print to Figure — Prints the spectra plot in the main display to
a MATLAB figure window

4 From the Tools menu, click

• Add Marker — Opens the Add Marker dialog. Enter an m/z
marker.

• Delete Marker — Removes the currently selected m/z marker
from the Markers (m/z) list.

• Next Marker or Previous Marker — Moves the selection up and
down the Markers (m/z) list.

• Zoom XY, Zoom X, Zoom Y, or Zoom Out — Changes the cursor
from an arrow to crosshairs. Left-click and drag a rectangle box
over an area and then release the mouse button. The display
zooms the area covered by the box.

5 Move the cursor to the range window at the bottom. Click and drag
the view box to a new location.

See Also Bioinformatics Toolbox functions msalign, msbackadj, mslowess,
msnorm, msheatmap, msresample, mssgolay

2-310

molweight

Purpose Calculate molecular weight of amino acid sequence

Syntax molweight(SeqAA)

Arguments
SeqAA Amino acid sequence. Enter a character string

or a vector of integers from the table Amino Acid
Lookup Table on page 2-27. Examples: 'ARN', [1
2 3]. You can also enter a structure with
the field Sequence.

Description molweight(SeqAA) calculates the molecular weight for the amino acid
sequence SeqAA.

Examples 1 Get an amino acid sequence from the NCBI Genpept Database

rhodopsin = getgenpept('NP_000530');

2 Calculate the molecular weight of the sequence.

rhodopsinMW = molweight(rhodopsin)

rhodopsinMW =

3.8892e+004

See Also Bioinformatics Toolbox functions aacount, atomiccomp, isoelectric,
proteinplot

2-311

multialign

Purpose Align multiple sequences using progressive method

Syntax SeqsMultiAligned = multialign(Seqs)
SeqsMultiAligned = multialign(Seqs, Tree)
multialign(..., 'PropertyName', PropertyValue,...)
multialign(..., 'Weights', WeightsValue)
multialign(..., 'ScoringMatrix', ScoringMatrixValue)
multialign(..., 'SMInterp', SMInterpValue)
multialign(..., 'GapOpen', GapOpenValue)
multialign(..., 'ExtendedGap', ExtendedGapValue)
multialign(..., 'DelayCutoff', DelayCutoffValue)
multialign(..., 'JobManager', JobManagerValue)
multialign(..., 'WaitInQueue', WaitInQueueValue)
multialign(..., 'Verbose', VerboseValue)
multialign(..., 'ExistingGapAdjust', ExistingGapAdjustValue)
multialign(..., 'TerminalGapAdjust', TerminalGapAdjustValue)

Arguments Seqs Vector of structures with the fields
'Sequence' for the residues and
'Header' or 'Name' for the labels.

Seqs may also be a cell array of strings
or a char array.

SeqsMultiAligned Vector of structures (same as Seqs) but
with the field 'Sequence' updated with
the alignment.

When Seqs is a cell or char array,
SeqsMultiAligned is a char array with
the output alignment following the
same order as the input.

Tree Phylogenetic tree calculated with
either of the functions seqlinkage or
seqneighjoin.

2-312

multialign

WeightsValue Property to select the sequence
weighting method. Enter either 'THG'
(default) or 'equal'.

ScoringMatrixValue Property to select or specify the
scoring matrix. Enter an [MxM]
matrix or [MxMxN] array of matrixes
withN user-defined scoring matrices.
ScoringMatrixValuemay also be a cell
array of strings with matrix names.The
default is the BLOSUM80 to BLOSUM30
series for amino acids or a fixed matrix
NUC44 for nucleotides. When passing
your own series of scoring matrices
make sure all of them share the same
scale.

SMInterpValue Property to specify whether linear
interpolation of the scoring matrices is
on or off. When false, scoring matrix is
assigned to a fixed range depending on
the distances between the two profiles
(or sequences) being aligned. Default
is true.

GapOpenValue Scalar or a function specified using @. If
you enter a function,multialign passes
four values to the function: the average
score for two matched residues (sm),
the average score for two mismatched
residues (sx), and, the length of both
profiles or sequences (len1, len2).
Defaults value is @(sm,sx,len1,len2)
2*sm.

2-313

multialign

ExtendedGapValue Scalar or a function specified using @.
IF you enter a function, multiialign
passes four values to the function:
the average score for two matched
residues (sm), the average score
for two mismatched residues (sx),
and the length of both profiles or
sequences (len1, len2). Default value
is @(sm,sx,len1,len2) sm/20.

DelayCutoffValue Property to specify the threshold delay
of divergent sequences. The default is
unity where sequences with the closest
sequence farther than the median
distance are delayed.

JobManagerValue JobManager object representing
an available distributed MATLAB
resource. Enter a jobmanager object
returned by the Distributed Computing
Toolbox function findResource.

WaitInQueueValue Property to control waiting for a
distributed MATLAB resource to be
available. Enter either true or false.
The default value is false.

VerboseValue Property to control displaying the
sequences with sequence information.
Default value is false.

2-314

multialign

ExistingGagAdjustValue Property to control automatic
adjustment based on existing gaps.
Default value is true.

TerminalGapAdjustValue Property to adjusts the penalty for
opening a gap at the ends of the
sequence. Default value is false.

Description SeqsMultiAligned = multialign(Seqs) performs a progressive
multiple alignment for a set of sequences (Seqs). Pairwise distances
between sequences are computed after pairwise alignment with the
Gonnet scoring matrix and then by counting the proportion of sites at
which each pair of sequences are different (ignoring gaps). The guide
tree is calculated by the neighbor-joining method assuming equal
variance and independence of evolutionary distance estimates.

SeqsMultiAligned = multialign(Seqs, Tree) uses a tree (Tree) as a
guide for the progressive alignment. The sequences (Seqs) should have
the same order as the leaves in the tree (Tree) or use a field ('Header'
or 'Name') to identify the sequences.

multialign(..., 'PropertyName', PropertyValue,...) enters
optional arguments as property name/value pairs.

multialign(..., 'Weights', WeightsValue) selects the sequence
weighting method. Weights emphasize highly divergent sequences by
scaling the scoring matrix and gap penalties. Closer sequences receive
smaller weights.

Values of the property Weights:

• 'THG'(default) — Thompson-Higgins-Gibson method using the
phylogenetic tree branch distances weighted by their thickness.

• 'equal' — Assigns same weight to every sequence.

multialign(..., 'ScoringMatrix', ScoringMatrixValue) selects the
scoring matrix (ScoringMatrixValue) for the progressive alignment.
Match and mismatch scores are interpolated from the series of scoring

2-315

multialign

matrices by considering the distances between the two profiles or
sequences being aligned. The first matrix corresponds to the smallest
distance and the last matrix to the largest distance. Intermediate
distances are calculated using linear interpolation.

multialign(..., 'SMInterp', SMInterpValue), when SMInterpValue
is false, turns off the linear interpolation of the scoring matrices.
Instead, each supplied scoring matrix is assigned to a fixed range
depending on the distances between the two profiles or sequences being
aligned.

multialign(..., 'GapOpen', GapOpenValue) specifies the initial
penalty for opening a gap.

multialign(..., 'ExtendedGap', ExtendedGapValue) specifies the
initial penalty for extending a gap.

multialign(..., 'DelayCutoff', DelayCutoffValue) specifies a
threshold to delay the alignment of divergent sequences whose closest
neighbor is farther than

(DelayCutoffValue) * (median patristic distance
between sequences)

multialign(..., 'JobManager', JobManagerValue) distributes
pairwise alignments into a cluster of computers using the Distributed
Computing Toolbox.

multialign(..., 'WaitInQueue', WaitInQueueValue) when
WaitInQueueValue is true, waits in the job manager queue for an
available worker. When WaitInQueueValue is false (default) and there
are no workers immediately available, multialign errors out. Use this
property with the Distributed Computing Toolbox and the multialign
property WaitInQueue.

multialign(..., 'Verbose', VerboseValue), when VerboseValue is
true, turns on verbosity.

The remaining input optional arguments are analogous to the function
profalign and are used through every step of the progressive
alignment of profiles.

2-316

multialign

multialign(..., 'ExistingGapAdjust', ExistingGapAdjustValue),
if ExistingGapAdjustValue is false, turns off the automatic
adjustment based on existing gaps of the position-specific penalties for
opening a gap.

When ExistingGapAdjustValue is true, for every profile position,
profalign proportionally lowers the penalty for opening a gap toward
the penalty of extending a gap based on the proportion of gaps found in
the contiguous symbols and on the weight of the input profile.

multialign(..., 'TerminalGapAdjust', TerminalGapAdjustValue),
when TerminalGapAdjustValue is true, adjusts the penalty for
opening a gap at the ends of the sequence to be equal to the penalty
for extending a gap.

Example1 1 Align seven cellular tumor antigen p53 sequences.

p53 = fastaread('p53samples.txt')
ma = multialign(p53,'verbose',true)
showalignment(ma)

2-317

multialign

2 Use an UPGMA phylogenetic tree instead as a guiding tree.

dist = seqpdist(p53,'ScoringMatrix',gonnet);
tree = seqlinkage(dist,'UPGMA',p53)

Phylogenetic tree object with 7 leaves (6 branches)

3 Score the progressive alignment with the PAM family.

ma = multialign(p53,tree,'ScoringMatrix',...
{'pam150','pam200','pam250'})

showalignment(ma)

2-318

multialign

Example 2 1 Enter an array of sequences.

seqs = {'CACGTAACATCTC','ACGACGTAACATCTTCT','AAACGTAACATCTCGC'};

2 Promote terminations with gaps in the alignment.

multialign(seqs,'terminalGapAdjust',true)

ans =
--CACGTAACATCTC--
ACGACGTAACATCTTCT

2-319

multialign

-AAACGTAACATCTCGC

3 Compare alignment without termination gap adjustment.

multialign(seqs)

ans =
CA--CGTAACATCT--C
ACGACGTAACATCTTCT
AA-ACGTAACATCTCGC

See Also Bioinformatics Toolbox functions hmmprofalign, multialignread,
nwalign, profalign, seqprofile, seqconsensus, seqneighjoin,
showalignment

2-320

multialignread

Purpose Read multiple-sequence alignment file

Syntax S = multialignread(File)
[Headers, Sequences] = multialignread(File)
multialignread(..., 'PropertyName', PropertyValue,...)
multialignread(..., 'IgnoreGaps', IgnoreGapsValue)

Arguments
File Multiple sequence alignment file (ASCII

text file). Enter a filename, a path and
filename, or a URL pointing to a file.
File can also be a MATLAB character
array that contains the text of a multiple
sequence alignment file. You can read
common multiple alignment file types,
such as ClustalW (.aln) and GCG (.msf).

IgnoreGapsValue Property to control removing gap
symbols.

Description S = multialignread(File) reads a multiple sequence alignment file.
The file contains multiple sequence lines that start with a sequence
header followed by an optional number (not used by multialignread)
and a section of the sequence. The multiple sequences are broken into
blocks with the same number of blocks for every sequence. (For an
example, type open aagag.aln.) The output S is a structure array
where S.Header contains the header information and S.Sequence
contains the amino acid or nucleotide sequences.

[Headers, Sequences] = multialignread(File) reads the file into
separate variables Headers and Sequences.

multialignread(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

multialignread(..., 'IgnoreGaps', IgnoreGapsValue), when
IgnoreGapsValue is true, removes any gap symbol ('-' or '.') from
the sequences. Default is false.

2-321

multialignread

Example 1 Read a multiple sequence alignment of the gag polyprotein for
several HIV strains.

gagaa = multialignread('aagag.aln')

gagaa =

1x16 struct array with fields:
Header
Sequence

See Also Bioinformatics Toolbox functions fastaread, gethmmalignment,
seqdisp, multialign, seqconsensus, seqprofile

2-322

multialignviewer

Purpose Open viewer for multiple sequence alignments

Syntax multialignviewer(Alignment)
multialignviewer(..., 'PropertyName', PropertyValue,...)
multialignviewer(..., 'Alphabet', AlphabetValue)

Description The multialignviewer is an interactive graphical user interface (GUI)
for viewing multiple sequence alignments.

multialignviewer(Alignment) loads a group of previously multiple
aligned sequences into the viewer. Alignment is a structure with a field
Sequence, a character array, or a filename.

multialignviewer(..., 'PropertyName', PropertyValue,...)
defines optional properties using property name/value pairs.

multialignviewer(..., 'Alphabet', AlphabetValue) specifies
the alphabet type for the sequences . AlphabetValue can be 'AA'
for amino acids or 'NT' for nucleotides. The default value is 'AA'.
If AlphabetValue is not specified, multialignviewer guesses the
alphabet type.

Examples multialignviewer('aagag.aln')

See Also Bioinformatics Toolbox functions fastaread, gethmmalignment,
multialign, multialignread, seqtool

2-323

nmercount

Purpose Count number of n-mers in nucleotide or amino acid sequence

Syntax nmercount(Seq, Length)
nmercount(Seq, Length, C)

Arguments
Seq Nucleotide or amino acid sequence. Enter a

character string or a structure with the field
Sequence.

Length Length of n-mer to count. Enter an integer.

Description nmercount(Seq, Length) counts the number of n-mers or patterns of a
specific length in a sequence.

nmercount(Seq, Length, C) returns only the n-nmers with cardinality
at least C.

Examples Count the number of n-mers in an amino acid sequence and display
the first six rows in the cell array.

S = getgenpept('AAA59174','SequenceOnly',true)
nmers = nmercount(S,4);
nmers(1:6,:)

ans =
'apes' [2]
'dfrd' [2]
'eslk' [2]
'frdl' [2]
'gnys' [2]
'lkel' [2]

See Also Bioinformatics Toolbox functions basecount, codoncount, dimercount

2-324

num2goid

Purpose Convert numbers to Gene Ontology IDs

Syntax GOIDs = num2goid(X)

Description GOIDs = num2goid(X) converts the numbers in X to strings with Gene
Ontology IDs. IDs are a 7-digit number preceded by the prefix 'GO:'.

Examples Get the Gene Ontology IDs of the following numbers.

t = [5575 5622 5623 5737 5840 30529 43226 43228 ...
43229 43232 43234];

ids = num2goid(t)

See Also Bioinformatics Toolbox

• functions — geneont (constructor), goannotread

• geneont object methods — getancestors, getdescendants,
getmatrix, getrelatives

2-325

nt2aa

Purpose Convert nucleotide sequence to amino acid sequence

Syntax SeqAA = nt2aa(SeqNT, 'PropertyName', PropertyValue)
nt2aa(..., 'Frame', FrameValue)
nt2aa(..., 'GeneticCode', GeneticCodeValue)
nt2aa(..., 'AlternativeStartCodons', AlternativeValue)

Arguments
SeqNT DNA nucleotide sequence. Enter a character

string with only the characters A, T, C, and G.
You cannot use the character U, ambiguous
characters, or a hyphen. You can also enter
a structure with the field Sequence.

FrameValue Property to select a frame. Enter 1, 2, 3, or
'ALL'. The default value is 1.

GeneticCodeValue Property to select a genetic code. Enter a
code number or code name from the table
Genetic Code on page 2-326below. If you use
a code name, you can truncate the name to
the first two characters of the name.

AlternativeValue Property to control the use of alternative
codons. Enter either true or false. The
default value is true.

Genetic Code

Code Number Code Name Code Number Code Name

1 Standard 12 Alternative
Yeast Nuclear

2 Vertebrate
Mitochondrial

13 Ascidian
Mitochondrial

3 Yeast
Mitochondrial

14 Flatworm
Mitochondrial

2-326

nt2aa

Code Number Code Name Code Number Code Name

4 Mold,
Protozoan,
Coelenterate
Mitochondrial,
and
Mycoplasma
/Spiroplasma

15 Blepharisma
Nuclear

5 Invertebrate
Mitochondrial

16 Chlorophycean
Mitochondrial

6 Ciliate,
Dasycladacean,
and Hexamita
Nuclear

21 Trematode
Mitochondrial

9 Echinoderm
Mitochondrial

22 Scenedesmus
Obliquus
Mitochondrial

10 Euplotid
Nuclear

23 Thraustochytrium
Mitochondrial

11 Bacterial and
Plant Plastid

Description SeqAA = nt2aa(SeqNT, 'PropertyName', PropertyValue) converts a
nucleotide sequence to an amino acid sequence using the standard
genetic code.

nt2aa(..., 'Frame', FrameValue) converts a nucleotide sequence for a
specific reading frame to an amino acid sequence. If FrameValue equals
'ALL', then the three reading frames are converted and the output is
a 3-by-1 cell array.

nt2aa(..., 'GeneticCode', GeneticCodeValue) converts a nucleotide
sequence to an amino acid sequence using a specific genetic code.

2-327

nt2aa

nt2aa(..., 'AlternativeStartCodons', AlternativeValue) controls the
use of alternative start codons. By default, AlternativeStartCodons is
set to true, and if the first codon of a sequence corresponds to a known
alternative start codon, the codon is translated to methionine.

If this option is set to false, then alternative start codons at the start
of a sequence are translated to their corresponding amino acids for the
genetic code that you use, which might not necessarily be methionine.
For example, in the human mitochondrial genetic code, AUA and AUU are
known to be alternative start codons.

For more details of alternative start codons, see

www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

Examples Convert the gene ND1 on the human mitochondria genome.

mitochondria = getgenbank('NC_001807','SequenceOnly',true)
gene = mitochondria (3308;4264)
protein1 = nt2aa(gene,'GeneticCode', 2)
protein2 = getgenpept('NP_536843',SequenceOnly',true)

Convert the gene ND2 on the human mitochondria genome. In this
case, the first codon is att, which is converted to M, while the following
att codons are converted to I. If you set 'AlternativeStartCodons'
to false, then the first codon att is converted to I.

mitochondria = getgenbank('NC_001807','SequenceOnly',true)
gene = mitochondria (3371:4264)
protein1 = nt2aa(gene,'GeneticCcode',2)
protein2 = getgenpept('NP_536844', 'SequenceOnly',true)

See Also Bioinformatics Toolbox functions aa2int, baselookup, geneticcode,
revgeneticcode, aminolookup, baselookup, codonbias, dnds, dndsml,
seqtool

2-328

nt2int

Purpose Convert nucleotide sequence from letter to integer representation

Syntax SeqInt =
nt2int(SeqChar, 'PropertyName', PropertyValue)
nt2int(..., 'Unknown', UnknownValue)
nt2int(..., 'ACGTOnly', ACGTONlyValue)

Arguments
SeqChar Nucleotide sequence represented with letters.

Enter a character string from the table Mapping
Nucleotide Letters to Integers below. Integers
are arbitrarily assigned to IUB/IUPAC letters.
If the property ACGTOnly is true, you can only
enter the characters A, C, T, G, and U.

UnknownValue Property to select the integer for unknown
characters. Enter an integer. Maximum value is
255. Default value is 0.

ACGTOnlyValue Property to control the use of ambiguous
nucleotides. Enter either true or false. Default
value is false.

Mapping Nucleotide Letters to Integers

Base Code Base Code Base Code

Adenosine A—1 T, C
(pyrimidine)

Y—6 A, T, G (not
C)

D—12

Cytidine C—2 G, T (keto) K—7 A, T, C (not
G)

H—13

Guanine G—3 A, C (amino) M—8 A, G, C (not
T)

V—14

2-329

nt2int

Base Code Base Code Base Code

Thymidine T—4 G, C (strong) S—9 A, T, G, C (any) N—15

Uridine U—4 A, T (weak) W—10 Gap of
indeterminate
length

- —16

A, G
(purine)

R—5 T, G, C (not
A)

B—11 Unknown
(default)

*—0
and
≥17

Description SeqInt = nt2int(SeqChar, 'PropertyName', PropertyValue) converts
a character string of nucleotides to a 1-by-N array of integers using
the table Mapping Nucleotide Letters to Integers above. Unknown
characters (characters not in the table) are mapped to 0. Gaps
represented with hyphens are mapped to 16.

nt2int(..., 'Unknown', UnknownValue) defines the number used to
represent unknown nucleotides. The default value is 0.

nt2int(..., 'ACGTOnly', ACGTONlyValue) if ACGTOnly is true, the
ambiguous nucleotide characters (N, R, Y, K, M, S, W, B, D, H, and V) are
represented by the unknown nucleotide number.

Examples Convert a nucleotide sequence with letters to integers.

s = nt2int('ACTGCTAGC')

s =
1 2 4 3 2 4 1 3 2

See Also Bioinformatics Toolbox function aa2int, baselookup, int2aa, int2nt

2-330

ntdensity

Purpose Plot density of nucleotides along sequence

Syntax Density = ntdensity(SeqNT,
'PropertyName', PropertyValue)
ntdensity(..., 'Window', WindowValue)
[Density, HighCG] = ntdensity(..., 'CGThreshold',
CGThresholdValue)

Description ntdensity(SeqNT) plots the density of nucleotides A, T, C, G in sequence
SeqNT.

Density = ntdensity(SeqNT, 'PropertyName', PropertyValue) returns a
MATLAB structure with the density of nucleotides A, C, G, and T.

ntdensity(..., 'Window', WindowValue) uses a window of length Window
for the density calculation. The default value is length(SeqNT)/20.

[Density, HighCG] = ntdensity(..., 'CGThreshold',
CGThresholdValue) returns indices for regions where the CG content of
SeqNT is greater than CGThreshold. The default value for CGThreshold
is 5.

Examples s = randseq(1000, 'alphabet', 'dna');
ndensity(s)

2-331

ntdensity

See Also Bioinformatics Toolbox functions basecount, codoncount, cpgisland,
dimercount

MATLAB function filter

2-332

nuc44

Purpose NUC44 scoring matrix for nucleotide sequences

Syntax ScoringMatrix = nuc44
[ScoringMatrix, MatrixInfo] = nuc44

Description ScoringMatrix = nuc44 returns the scoring matrix. The nuc44 scoring
matrix uses ambiguous nucleotide codes and probabilities rounded to
the nearest integer.

Scale = 0.277316

Expected score = -1.7495024, Entropy = 0.5164710 bits

Lowest score = -4, Highest score = 5

Order: A C G T R Y K M S W B D H V N

[ScoringMatrix, MatrixInfo] = nuc44 returns a structure with
information about the matrix with fields Name and Order.

2-333

nwalign

Purpose Globally align two sequences using Needleman-Wunsch algorithm

Syntax Score = nwalign(Seq1,Seq2)
[Score, Alignment] = nwalign(Seq1,Seq2)
[Score, Alignment, Start] = nwalign(Seq1,Seq2)
nwalign(..., 'PropertyName', PropertyValue,...)
nwalign(..., 'Alphabet', AlphabetValue)
nwalign(..., 'ScoringMatrix', ScoringMatirxValue)
nwalign(..., 'Scale', ScaleValue)
nwalign(..., 'GapOpen', GapOpenValue)
nwalign(..., 'Showscore', ShowscoreValue)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequences. Enter a

character string or a structure with the field
Sequence.

AlphabetValue Property to select the type of sequence. Value
is either'AA'(default) or 'NT'.

ScoringMatrixValueEnter the name of a scoring matrix. Values
are 'PAM40’, 'PAM250', DAYHOFF, GONNET,
'BLOSUM30' increasing by 5 to 'BLOSUM90',
'BLOSUM62', or 'BLOSUM100'.

The default value when AlphabetValue equals
'aa' is 'BLOSUM50', while the default value
when AlphabetValue equals 'nt' is nuc44.

ScaleValue Property to specify a scaling factor for a scoring
matrix.

GapOpenValue Property to specify the penalty for opening a
gap. The default value is 8.

2-334

nwalign

ExtendedGapValue Property to specify the penalty for extending a
gap. If ExtendGapValue is not specified, then
the default value is equal to GapOpenValue.

ShowscoreValue Property to control displaying the scoring space
and the winning path. Enter either true or
false. The default value is false.

Description Score = nwalign(Seq1,Seq2) returns the alignment score in bits for
the optimal alignment. The scale factor used to calculate the score is
provided by the scoring matrix information. If this is not defined, then
nwalign returns the raw score.

[Score, Alignment] = nwalign(Seq1,Seq2) returns a string showing
an optimal global alignment for the sequences. Amino acids that match
are indicated with the symbol |, while related amino acids (nonmatches
with a positive scoring matrix value) are indicated with the symbol :.
Units for Score are bits.

[Score, Alignment, Start] = nwalign(Seq1,Seq2) returns a 2x1
vector with the starting point indices indicating the starting point of the
alignment in the two sequences. Note: This output is for consistency
with nwalign, but because this is a global alignment, the starting
position is always [1;1].

nwalign(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

nwalign(..., 'Alphabet', AlphabetValue) selects the amino acid or
nucleotide alphabet for sequences.

nwalign(..., 'ScoringMatrix', ScoringMatirxValue) selects the
scoring matrix to use for the alignment.

nwalign(..., 'Scale', ScaleValue) specifies the scale factor of the
scoring matrix to return the score using arbitrary units. If the scoring
matrix also provides a scale factor, then both are used.

nwalign(..., 'GapOpen', GapOpenValue) specifies the penalty for
opening a gap in the alignment.

2-335

nwalign

nwalign(..., 'ExtendGap', ExtendGapValue) specifies the penalty
for extending a gap in the alignment. If ExtendGapValue is not
specified, then extensions to gaps are scored with the same value as
GapOpenValue.

nwalign(..., 'Showscore', ShowscoreValue) displays the scoring
space and the winning path.

Examples Globally align two amino acid sequences.

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD')

Score =
7.3333

Alignment =
VSPAGMASGYD
: | | || ||
I-P-GKAS-YD

Select scoring matrix and gap penalty.

[Score, Alignment] = nwalign('IGRHRYHIGG','SRYIGRG',...
'scoringmatrix','pam250',...
'gapopen',5)

Score =
2.3333

Alignment =

IGRHRYHIG-G
: || || |

-S--RY-IGRG

See Also Bioinformatics Toolbox functions blosum, multialign, nt2aa, pam,
profalign, seqdotplot, showalignment, swalign

2-336

oligoprop

Purpose Calculate nucleotide DNA sequence properties

Syntax SeqProperties = oligoprop(SeqNT)
oligoprop(..., 'PropertyName', PropertyValue,...)
oligoprop(..., 'Salt', SaltValue)
oligoprop(..., 'Temp', TempValue)
oligoprop(..., 'Primerconc', PrimerconcValue)
oligoprop(..., 'HPBase', HPBaseValue)
oligoprop(..., 'HPLoop',HPLoopValue)
oligoprop(..., 'Dimerlength', DimerlengthValue)

Arguments
SeqNT DNA nucleotide sequence. Enter either a

character string with the characters A, T, G, C,
or a vector with the integers 1, 2, 3, 4. You can
also enter a structure with the field Sequence.

Description SeqProperties = oligoprop(SeqNT) returns the properties for an
oligonucleotide DNA sequence as a structure with the following fields:

GC Percent GC content for the oligonucleotide

Hairpins N-by-length(SEQ) matrix of characters where potential
hairpin forming bases are in caps. Each row is a
potential secondary structure (hairpin).

Dimers N-by-length(SEQ)matrix of characters where potential
self dimerizing bases are in caps. Each row is a
potential dimer.

MolWeight Molecular weight of the oligonucleotide.

2-337

oligoprop

Tm A vector with melting temperature values. The values
are listed in the following order: basic (Marmur
1962), salt adjusted (Howley 1979), nearest neighbor
(Breslaur 1986), nearest neighbor (SantaLucia Jr
1996), nearest neighbor (SantaLucia Jr 1998), and
nearest neighbor (Sugimoto 1996).

Thermo 4–by–3 matrix of thermodynamic calculations where
the first column is delta H, the second column is delta S,
and the third column is delta G at 37 degrees Celsius.
The rows correspond to nearest-neighbor parameters
from Breslaur 1986, SantaLucia Jr. 1996, SantaLucia
Jr 1998, and Sugimoto 1996.

Unit labels for the thermodynamic and melting temp calculations:

• Tm — degrees Celsius, C

• delta H (enthalpy) — kilocalorie per mole, kcal/mol

• delta S (entropy) — calorie per mole-degrees Kelvin, (cal/(K)(mol)

• delta G (free energy) — kilocalorie per mole, kcal/mol

oligoprop(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/property value pairs.

oligoprop(..., 'Salt', SaltValue) specifies a salt concentration
in moles/liter for melting temperature calculations. The default value
is 0.05 moles/liter.

oligoprop(..., 'Temp', TempValue) specifies the temperature for
nearest neighbor calculations of free energy. The default value is 25
degrees Celsius.

oligoprop(..., 'Primerconc', PrimerconcValue) specifies the
concentration for melting temperatures. The default value is 50e-6
moles/liter.

2-338

oligoprop

oligoprop(..., 'HPBase', HPBaseValue) specifies the minimum
number of paired bases that form the neck of the hairpin. The default
value is 4 bases.

oligoprop(..., 'HPLoop',HPLoopValue) specifies the minimum
number of bases that form a hairpin. The default value is 2 bases.

oligoprop(..., 'Dimerlength', DimerlengthValue) specifies the
minimum number of aligned bases between the sequence and its
reverse. The default value is 4 bases.

Example 1 Create a random sequence.

seq = randseq(25)

2 Calculate sequence properties.

S = oligoprop(seq)

MATLAB displays properties for the oligonucleotide sequence.

S =
GC: 36

Hairpins: [0x25 char]
Dimers: 'tAGCTtcatcgttgacttctactaa'

MolWeight: 7.5820e+003
Tm: [52.7640 60.8629 62.2493 55.2870 54.0293 61.0614]

Thermo: [4x3 double]

3 List the thermodynamic calculations.

S.Thermo

ans =

-178.5000 -477.5700 -36.1125
-182.1000 -497.8000 -33.6809
-190.2000 -522.9000 -34.2974
-191.9000 -516.9000 -37.7863

2-339

oligoprop

References [1] Breslaur KJ, Frank R, Blöcker H, Marky LA (1986), “Predicting
DNA duplex stability from the base sequence”, Proceedings National
Academy of Science USA, 83:3746-3750.

[2] Chen S, Lin C, Cho C, Lo C, Hsiung C (2003), “Primer Design
Assistant (PDA): A web-based primer design tool,” Nucleic Acids
Research, 31(13): 3751-3754.

[3] Howley PM, Israel MF, Law M, Martin MA (1979), “A rapid method
for detecting and mapping homology between heterologous DNAs.
Evaluation of polyomavirus genomes,” The Journal of Biological
Chemistry, 254:4876-4883.

[4] Marmur J, Doty P (1962), “Determination of the base composition
of deoxyribonucleic acid from its thermal denaturation temperature,”
Journal Molecular Biology, 5:109-118.

[5] Panjkovich A, Melo F (2005), “Comparison of different melting
temperature calculation methods for short DNA sequences,”
Bioinformatics, 21(6): 711-722.

[6] SantaLucia Jr. J, Allawi HT, Seneviratne PA (1996), “Improved
Nearest-Neighbor Parameters for Predicting DNA Duplex Stability,”
Biochemistry, 35:3555-3562.

[7] SantaLucia Jr. J (1998), “A unified view of polymer, dumbbell, and
oligonucleotide DNA nearest-neighbor thermodynamics,” Proceedings
National Academy of Science USA, 95:1460-1465.

[8] Sugimoto N, Nakano S, Yoneyama M, Honda K (1996), “Improved
thermodynamic parameters and helix initiation factor to predict
stability of DNA duplexes,” Nucleic Acids Research, 24(22):4501-4505.

[9] http://www.basic.nwu.edu/biotools/oligocalc.html for weight
calculations

2-340

oligoprop

See Also Bioinformatics Toolbox functions isoelectric, molweight, ntdensity,
palindromes, randseq

2-341

palindromes

Purpose Find palindromes in sequence

Syntax [Position, Length] = palindromes(SeqNT,

'PropertyName', PropertyValue)

[Position, Length, Pal]

= palindromes(SeqNT)

palindromes(..., 'Length',LengthValue)

palindromes(..., 'Complement', ComplementValue)

Description [Position, Length] = palindromes(SeqNT, 'PropertyName', PropertyValue)

finds all palindromes in sequence SeqNT with a length greater than or
equal to 6, and returns the starting indices, Position, and the lengths
of the palindromes, Length.

[Position, Length, Pal] = palindromes(SeqNT) also returns a cell array
Pal of the palindromes.

palindromes(..., 'Length',LengthValue) finds all palindromes longer than
or equal to Length. The default value is 6.

palindromes(..., 'Complement', ComplementValue) finds complementary
palindromes if Complement is true, that is, where the elements match
their complementary pairs A-T(or U) and C-G instead of an exact
nucleotide match.

Examples [p,l,s] = palindromes('GCTAGTAACGTATATATAAT')

p =
11
12

l =
7
7

s =
'TATATAT'
'ATATATA'

[pc,lc,sc] = palindromes('GCTAGTAACGTATATATAAT',...

2-342

palindromes

'Complement',true);

Find the palindromes in a random nucleotide sequence.

a = randseq(100)

a =
TAGCTTCATCGTTGACTTCTACTAA
AAGCAAGCTCCTGAGTAGCTGGCCA
AGCGAGCTTGCTTGTGCCCGGCTGC
GGCGGTTGTATCCTGAATACGCCAT

[pos,len,pal]=palindromes(a)

pos =
74

len =
6

pal =
'GCGGCG'

See Also Bioinformatics Toolbox functions seqrcomplement, seqshowwords

MATLAB functions regexp, strfind

2-343

pam

Purpose PAM scoring matrix

Syntax ScoringMatrix = pam(N,
'PropertyName', PropertyValue)
[ScoringMatrix, MatrixInfo] = pam(N)
ScoringMatrix =
pam(..., 'Extended', 'ExtendedValue')
ScoringMatrix = pam(...,
'Order', 'OrderValue')

Arguments
N Enter values 10:10:500. The default ordering

of the output is A R N D C Q E G H I L K M
F P S T W Y V B Z X *.

Entering a larger value for N to allow sequence
alignments with larger evolutionary distances.

Extended Property to add ambiguous characters to the
scoring matrix. Enter either true or false.
Default is false.

Order Property to control the order of amino acids
in the scoring matrix. Enter a string with at
least the 20 standard amino acids.

Description ScoringMatrix = pam(N, 'PropertyName', PropertyValue) returns a PAM
scoring matrix for amino acid sequences.

[ScoringMatrix, MatrixInfo] = pam(N) returns a structure with
information about the PAM matrix. The fields in the structure are Name,
Scale, Entropy, Expected, and Order.

ScoringMatrix = pam(..., 'Extended', 'ExtendedValue') if Extended is
true, returns a scoring matrix with the 20 amino acid characters, the
ambiguous characters, and stop character (B, Z, X, *), . If Extended is
false, only the standard 20 amino acids are included in the matrix.

2-344

pam

ScoringMatrix = pam(..., 'Order', 'OrderValue') returns a PAM
matrix ordered by the amino acid sequence in Order. If Order does not
contain the extended characters B, Z, X, and *, then these characters
are not returned.

PAM50 substitution matrix in 1/2 bit units, Expected score = -3.70,
Entropy = 2.00 bits, Lowest score = -13, Highest score = 13.

PAM250 substitution matrix in 1/3 bit units, Expected score = -0.844,
Entropy = 0.354 bits, Lowest score = -8, Highest score = 17.

Examples Get the PAM matrix with N = 50.

PAM50 = pam(50)

PAM250 = pam(250,'Order','CSTPAGNDEQHRKMILVFYW')

See Also Bioinformatics Toolbox functions blosum, dayhoff, gonnet, nwalign,
swalign

2-345

pdbdistplot

Purpose Visualize intermolecular distances in Protein Data Bank (PDB) file

Syntax pdbdistplot('PDBid')
pdbdistplot('PDBid', Distance)

Arguments
PDBid Unique identifier for a protein structure record. Each

structure in the PDB is represented by a 4-character
alphanumeric identifier.

For example, 4hhb is the identification code for
hemoglobin.

Distance Threshold distance in Angstroms shown on a spy
plot. Default value is 7.

Description pdbdistplot displays the distances between atoms and amino acids
in a PDB structure.

pdbdistplot('PDBid') retrieves the entry PDBid from the Protein Data
Bank (PDB) database and creates a heat map showing interatom
distances and a spy plot showing the residues where the minimum
distances apart are less than 7 Angstroms. PDBid can also be the name
of a variable or a file containing a PDB MATLAB structure.

pdbdistplot('PDBid', Distance) specifies the threshold distance shown
on a spy plot.

Examples Show spy plot at 7 Angstroms of the protein cytochrome C from albacore
tuna.

pdbdistplot('5CYT');

Now take a look at 10 Angstroms.

pdbdistplot('5CYT',10);

2-346

pdbdistplot

See Also Bioinformatics Toolbox functions getpdb, pdbread, pdbplot, pdbread,
proteinplot, ramachandran

2-347

pdbplot

Purpose Plot 3-D protein structure

Syntax pdbplot(PDBid, 'PropertyName', PropertyValue ...)
pdbplot(..., 'Plotmode', PlotmodeValue)
pdbplot(..., 'Colormode', ColormodeValue)
pdbplot(..., 'Showlabel', ShowlabelValue)
FigureHandle = pdbplot(...)

Arguments
PDBid PDBID can also be the name of a PDB structure or

a file containing a PDB structure.
Plotmode Property to select display backbone and side chains.

Enter either 'backbone' or 'mainchain'. The
default value is 'backbone' for the alpha carbon
backbone.

Colormode Property to select the color of atoms or folding
patters. Enter 'atom', 'chain', or 'secondary'.
The default is 'chain'.

Description pdbplot(PDBid, 'PropertyName', PropertyValue ...) retrieves 3D
information from the Web for a protein (PDBid), and plots the backbone
structure. Information for the protein is in the Protein Data Bank
(PDB) database.

pdbplot(..., 'Plotmode', PlotmodeValue) selects a plot with only
the alpha-carbon backbone or a plot with amino acid side-chains.

pdbplot(..., 'Colormode', ColormodeValue) selects the colors for a
plot.

• If Colormode is 'atom' and Plotmode is 'mainchain', atoms and
connections are colored green for carbon, blue for nitrogen, and red
for oxygen.

• The Colormode is ”chain’, the entire structure is one color.

2-348

pdbplot

• If Colormode is 'secondary', alpha helix patterns are colored
yellow, sheets are blue, turns are gray and, non alpha helix are cyan.

pdbplot(..., 'Showlabel', ShowlabelValue) when Showlabel is
true, displays the labels that represent each amino acid name and
sequence number in the protein. The default is false.

FigureHandle = pdbplot(...) returns the handle for the PDB plot
figure.

For more on viewing PDB molecules in MATLAB, see the molecule
viewer in MATLAB Central

www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=808

Examples Plot the 3D backbone structure for the protein
Insulin-Like-Growth-Factor-1. The identification number for this
protein in the PDB database is 1B9G.

1. In the MATLAB Command Window, type

pdbplot('1B9G')

A figure window opens with the 3D structure for this protein. The figure
title displays the identification number PDB Plot 1B9G while the
bottom of the figure shows the protein title or compound name Title:
INSULIN-LIKE-GROWTH-FACTOR-1.

3. Rotate, translate, and zoom the structure with the MATLAB camera
toolbar.

4. From File menu, select

• Save to Figure file — Saves the plot to a MATLAB figure file

• Print - Prints the plot

• Close - Closes the current PDB plot figure window

• Close All - Closes all the opened PDB plot figure windows

2-349

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=808%20

pdbplot

5. Select the different view options from the View menu or navigation
tool on the right side of the figure.

Select an Plot option button:

• Backbone - Plots c- alpha trace

• Main Chain - Plots main chain

Select a Color check box:

• Atoms - Color atoms based on predefined color code: Red = oxygen,
Green = carbon, Blue = nitrogen

• Secondary - Color secondary structures based on predefined color
code: yellow = a-helix, blue = beta-strand, gray = turn, cyan = helix
(non-alpha), green = all other structures

Select the Show check box:

• Labels - Show amino acid sequence labels

6. From the Help menu, Help or Demos for Bioinformatics toolbox.

See Also Bioinformatics Toolbox functions getpdb, pdbdistplot, pdbread,
proteinplot, ramachandran

2-350

pdbread

Purpose Read data from Protein Data Bank (PDB) file

Syntax PDBData = pdbread('File')

Arguments
File Protein Data Bank (PDB) formatted file (ASCII text file).

Enter a filename, a path and filename, or a URL pointing
to a file. File can also be a MATLAB character array that
contains the text for a PDB file.

Description The Protein Data Bank (PDB) is an archive of experimentally
determined three-dimensional protein structures. pdbread reads data
from a PDB formatted file into MATLAB.

PDBData = pdbread('File') reads the data in PDB formatted text file
File and stores the data in the MATLAB structure PDBData.

The data stored in each record of the PDB file is converted, where
appropriate, to a MATLAB structure. For example, the ATOM records
in a PDB file are converted to an array of structures with the following
fields: AtomSerNo, AtomName, altLoc, resName, chainID, resSeq, iCode,
X, Y, Z, occupancy, tempFactor, segID, element, and charge.

The sequence information from the PDB file is stored in the Sequence
field of PDBData. The sequence information is itself a structure with the
fields NumOfResidues, ChainID, ResidueNames, and Sequence. The field
ResidueNames contains the three-letter codes for the sequence residues.
The field Sequence contains the single-letter codes for the sequence. If
the sequence has modified residues, then the ResidueNames might not
correspond to the standard three-letter amino acid codes, in which case
the field Sequence will contain a ? in the position corresponding to
the modified residue.

For more information about the PDB format, see

http://www.rcsb.org/pdb/file_formats/pdb/pdbguide2.2/guide2.2_frame.

2-351

http://www.rcsb.org/pdb/file_formats/pdb/pdbguide2.2/guide2.2_frame.html

pdbread

Examples Get information for the human hemoglobin protein with number 1A00
from the Protein Data Bank, store information in the file collagen.pdb,
and then read the file back into MATLAB.

getpdb('1A00','ToFile', 'collagen.pdb')
pdbdata = pdbread('collagen.pdb')

See Also Bioinformatics Toolbox functions genpeptread, getpdb, pdbplot,
pdbdistplot

2-352

pdist (phytree)

Purpose Calculate pairwise patristic distances in phytree object

Syntax D = pdist(Tree)
[D,C] = pdist(Tree)
pdist(..., 'PropertyName', PropertyValue,...)
pdist(..., 'Nodes', NodeValue)
pdist(... , Squareform', SquareformValue)
pdist(..., 'Criteria', CriteriaValue)

Arguments
Tree Phylogenetic tree object created with the

function phytree.

NodeValue Property to select the nodes. Enter either
'leaves' (default) or ’all’.

SquareformValue Property to control creating a square matrix.

Description D = pdist(Tree) returns a vector (D) containing the patristic distances
between every possible pair of leaf nodes a phylogenetic tree object
(Tree). The patristic distances are computed by following paths through
the branches of the tree and adding the patristic branch distances
originally created with seqlinkage.

The output vector D is arranged in the order ((2,1),(3,1),...,
(M,1),(3,2),...(M,3),.....(M,M-1)) (the lower left triangle of the
full M-by-M distance matrix). To get the distance between the Ith and
Jth nodes (I > J), use the formula D((J-1)*(M-J/2)+I-J). M is the
number of leaves.

[D,C] = pdist(Tree) returns in C the index of the closest common
parent nodes for every possible pair of query nodes.

pdist(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

pdist(..., 'Nodes', NodeValue) indicates the nodes included in the
computation. When Node='leaves', the output is ordered as before, but
M is the total number of nodes in the tree (NumLeaves+NumBranches).

2-353

pdist (phytree)

pdist(... , Squareform', SquareformValue), when Squareform
is true, converts the output into a square formatted matrix, so that
D(I,J) denotes the distance between the Ith and the Jth nodes. The
output matrix is symmetric and has a zero diagonal.

pdist(..., 'Criteria', CriteriaValue) changes the criteria used to
relate pairs. C can be 'distance' (default) or 'levels'.

Examples 1 Get a phylogenetic tree from a file.

tr = phytreeread('pf00002.tree')

2 Calculate the tree distances between pairs of leaves.

dist = pdist(tr,'nodes','leaves','squareform',true)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread,
phytreetool, seqlinkage, seqpdist

2-354

pfamhmmread

Purpose Read data from PFAM-HMM file

Syntax Data = pfamhmmread('File')

Arguments
File PFAM-HMM formatted file. Enter a filename, a path

and filename, or a URL pointing to a file. File can also
be a MATLAB character array that contains the text
of a PFAM-HMM file.

Description pfamhmmread reads data from a PFAM-HHM formatted file (file saved
with the function gethmmprof) and creates a MATLAB structure.

Data = pfamhmmread('File') reads from File a Hidden Markov Model
described by the PFAM format, and converts it to the MATLAB
structure Data, containing fields corresponding to annotations and
parameters of the model. For more information about the model
structure format, see hmmprofstruct. File can also be a URL or a
MATLAB cell array that contains the text of a PFAM formatted file.

pfammread is based on the HMMER 2.0 file formats.

Examples pfamhmmread('pf00002.ls')

site='http://www.sanger.ac.uk/';
pfamhmmread([site 'cgi-bin/Pfam/download_hmm.pl?id=7tm_2'])

See Also Bioinformatics Toolbox functions gethmmalignment, gethmmprof,
hmmprofalign, hmmprofstruct, showhmmprof

2-355

phytree

Purpose Create phytree object

Syntax Tree = phytree(B)
Tree = phytree(B, D)
Tree = phytree(B, C)
Tree = phytree

Arguments
B Numeric array of size [NUMBRANCHES X 2] in which

every row represents a branch of the tree. It contains
two pointers to the branch or leaf nodes.

C Column vector with distances for every branch.
D Column vector with distances from every node to their

parent branch.

BC Combined matrix with pointers to branch or leaves,
and distances of branches.

N Cell array with the names of leafs and branches.

Description Tree = phytree(B) creates an ultrametric phylogenetic tree object.

B is a numeric array of size [NUMBRANCHES X 2] in which every row
represents a branch of the tree and it contains two pointers to the
branch or leave nodes which are its children.

Leaf nodes are numbered from 1 to NUMLEAVES and branch nodes are
numbered from NUMLEAVES + 1 to NUMLEAVES + NUMBRANCHES. Note
that because only binary trees are allowed, NUMLEAVES = NUMBRANCHES
+ 1.

Branches are defined in chronological order (for example, B(i,:) >
NUMLEAVES + i). As a consequence, the first row can only have pointers
to leaves, and the last row must represent the root branch. Parent-child
distances are set to 1, unless the child is a leaf and to satisfy the
ultrametric condition of the tree its distance is increased.

Given a tree with 3 leafs and 2 branches as an example.

2-356

phytree

In the MATLAB Command window, type

B = [1 2 ; 3 4]
tree = phytree(B)
view(tree)

Tree = phytree(B, D) creates an additive phylogenetic tree object with
branch distances defined by D. D is a numeric array of size [NUMNODES X
1] with the distances of every child node (leaf or branch) to its parent

2-357

phytree

branch equal to NUMNODES = NUMLEAVES + NUMBRANCHES. The last
distance in D is the distance of the root node and is meaningless.

b = [1 2 ; 3 4]: d = [1 2 1.5 1 0]
view(phytree(b,d)

Tree = phytree(B, C) creates an ultrametric phylogenetic tree
object with branch distances defined by C. C is a numeric array of
size [NUMBRANCHES X 1] with the coordinates of every branch node.
In ultrametric trees, all of the leaves are at the same location (same
distance to the root).

b = [1 2 ; 3 4]; c = [1 4]'
view(phytree(b,c))

Tree = phytree(BC) creates an ultrametric phylogenetic binary tree
object with branch pointers in BC(:,[1 2]) and branch coordinates in
BC(:,3). Same as phytree(B,C).

Tree = phytree(..., N) specifies the names for the leaves and/or the
branches. N is a cell of strings. If NUMEL(N)==NUMLEAVES, then the names
are assigned chronologically to the leaves. If NUMEL(N)==NUMBRANCHES,
the names are assigned to the branch nodes. If NUMEL(N)==NUMLEAVES
+ NUMBRANCHES, all the nodes are named. Unassigned names default
to 'Leaf #' and/or 'Branch #' as required.

Tree = phytree creates an empty phylogenetic tree object.

Method
Summary

get (phytree) Information about phylogenetic
tree object

getbyname (phytree) Branches and leaves from phytree
object

getcanonical (phytree) Calculate canonical form of
phylogenetic tree

getnewickstr (phytree) Create Newick-formatted string

2-358

phytree

pdist (phytree) Calculate pairwise patristic
distances in phytree object

phytree Create phytree object

plot (phytree) Draw phylogenetic tree

prune (phytree) Remove branch nodes from
phylogenetic tree

reroot (phytree) Change root of phylogenetic tree

select (phytree) Select tree branches and leaves
in phytree object

subtree (phytree) Extract phylogenetic subtree

view (phytree) View phylogenetic tree

weights (phytree) Calculate weights for
phylogenetic tree

Property
Summary Property Description

NumLeaves Number of leaves

NumBranches Number of branches

NumNodes Number of nodes (NumLeaves + Numbranches)
Pointers Branch to leaf/branch connectivity list

Distances Edge length for every leaf/branch

LeafNames Names of the leaves

BranchNames Names of the branches

NodeNames Names of all the nodes

Examples Create phylogenetic tree for a set of multiply aligned sequences.

Sequences = multialignread('aagag.aln')
distances = seqpdist(Sequences)

2-359

phytree

tree = seqlinkage(distances)
phytreetool(tree)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread,
phytreetool, phytreewrite, seqlinkage, seqneighjoin, seqpdist

• phytree object methods — get, getbyname, getcanonical,
getnewickstr, pdist, plot, prune, reroot, select, subtree, view,
weights

2-360

phytreeread

Purpose Read phylogenetic tree file

Syntax Tree = phytreeread(File)

Arguments
File Newick formatted tree files (ASCII text file). Enter a

filename, a path and filename, or a URL pointing to a
file. File can also be a MATLAB character array that
contains the text for a file.

Tree phytree object created with the function phytree.

Description Tree = phytreeread(File) reads a Newick formatted tree file and
returns a phytree object in the MATLAB workspace with data from
the file.

The NEWICK tree format can be found at

http://evolution.genetics.washington.edu/
phylip/newicktree.html

Note This implementation only allows binary trees. Non-binary trees
are translated into a binary tree with extra branches of length 0.

Examples tr = phytreeread('pf00002.tree')

See Also Bioinformatics Toolbox functions phytree (object constructor),
gethmmtree, phytreetool, phytreewrite

2-361

phytreetool

Purpose View, edit, and explore phylogenetic tree data

Syntax phytreetool(Tree)
phytreetool(File)

Arguments
Tree Phytree object created with the functions phytree

or phytreeread.

File Newick or ClustalW tree formatted file (ASCII text
file) with phylogenetic tree data. Enter a filename, a
path and filename, or a URL pointing to a file. File
can also be a MATLAB character array that contains
the text for a Newick file.

Description phytreetool is an interactive GUI that allows you to view, edit, and
explore phylogenetic tree data. This GUI allows branch pruning,
reordering, renaming, and distance exploring. It can also open or save
Newick formatted files.

phytreetool(Tree) loads data from a phytree object in the MATLAB
workspace into the GUI.

phytreetool(File) loads data from a Newick formatted file into the GUI.

Examples tr= phytreeread('pf00002.tree')
phytreetool(tr)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread,
phytreewrite

• phytree object methods — plot, view

2-362

phytreewrite

Purpose Write phylogenetic tree object to Newick-formatted file

Syntax phytreewrite('File', Tree)
phytreewrite(Tree)

Arguments
File Newick formatted file. Enter either a filename or a

path and filename supported by your operating system
(ASCII text file).

Tree Phylogenetic tree object. Tree must be an object
created with either the function phytree or imported
using the function dnds.

Description phytreewrite('File', Tree) copies the contents of a phytree object
from the MATLAB workspace to a file. Data in the file uses the Newick
format for describing trees.

The NEWICK tree format can be found at

http://evolution.genetics.washington.edu/
phylip/newicktree.html

phytreewrite(Tree) opens the Save Phylogenetic tree as dialog box
for you to enter or select a filename.

Examples Read tree data from a Newick formatted file.

tr = phytreeread('pf00002.tree')

Remove all the ’mouse’ proteins

ind = getbyname(tr,'mouse');
tr = prune(tr,ind);
view(tr)

Write pruned tree data to a file.

2-363

phytreewrite

phytreewrite('newtree.tree', tr)

See Also Bioinformatics Toolbox

• functions — phytree, phytreeread, phytreetool, seqlinkage

• phytree object methods — getnewickstr

2-364

plot (phytree)

Purpose Draw phylogenetic tree

Syntax plot(Tree)
plot(Tree, ActiveBranches)
plot(..., 'Type', TypeValue)
plot(...,'Orientation', OrientationValue)
plot(...,'BranchLabels', BranchLabelsValue)
plot(...,'LeafLabels', LeafLabelsValue)
plot(...,'TerminalLabels', TerminalLabelsValue)

Arguments
Tree phytree object created with the function

phytree

ActiveBranches Branches veiwable in the figure window.

TypeValue Property to select a method for drawing
a phylogenetic tree. Enter 'square' ,
'angular', or 'radial'. The default value
is 'square'.

OrientationValue Property to orient a phylogram or cladogram
tree. Enter 'top', 'bottom', 'left', or
'right'. The default value is 'left'.

BranchLabelsValue Property to control displaying branch labels.
Enter either true or false. The default
value is false.

LeafLabelsValue Property to control displaying leaf labels.
Enter either true or false. The default
value is false.

TerminalLabels Property to control displaying terminal
labels. Enter either true or false. The
default value is false.

Description plot(Tree) draws a phylogenetic tree object into a MATLAB figure as
a phylogram. The significant distances between branches and nodes

2-365

plot (phytree)

are in the horizontal direction. Vertical distances have no significance
and are selected only for display purposes. Handles to graph elements
are stored in the figure field UserData so that you can easily modify
graphic properties.

plot(Tree, ActiveBranches) hides the nonactive branches and all
of their descendants. ActiveBranches is a logical array of size
numBranches x 1 indicating the active branches.

plot(..., 'Type', TypeValue) selects a method for drawing a
phylogenetic tree.

plot(...,'Orientation', OrientationValue) orients a phylogenetic tree
within a figure window. The Orientation property is valid only for
phylogram and cladogram trees.

plot(...,'BranchLabels', BranchLabelsValue) hides or displays branch
labels placed next to the branch node.

plot(...,'LeafLabels', LeafLabelsValue) hides or displays leaf labels
placed next to the leaf nodes.

plot(...,'TerminalLabels', TerminalLabelsValue) hides or displays
terminal labels. Terminal labels are placed over the axis tick labels and
ignored when Type= 'radial'.

H = plot(...) returns a structure with handles to the graph elements.

Examples tr = phytreeread('pf00002.tree')
plot(tr,'Type','radial')

Graph element properties can be modified as follows:

h=get(gcf,'UserData')
set(h.branchNodeLabels,'FontSize',6,'Color',[.5 .5 .5])

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread,
phytreetool, seqlinkage

2-366

plot (phytree)

• phytree object method — view

2-367

probelibraryinfo

Purpose Probe set library information for probe results

Syntax ProbeInfo = probelibraryinfo(CELStruct, CDFStruct)

Description ProbeInfo = probelibraryinfo(CELStruct, CDFStruct)creates a
table of information linking the probe data in a CEL file structure with
probe set information from a CDF file structure.

ProbeInfo is a matrix with three columns and the same number of
rows as the probes field of the CELStruct. The first column is the probe
set ID number to which the corresponding probe belongs. The second
column contains the probe pair number and the third column indicates
if the probe is a perfect match (1) or mismatch (-1) probe. Probes that
do not correspond to a probe set in the CDF library file have probe set
ID equal to 0.

Note: Affymetrix probe pair indexing is 0 based while MATLAB
indexing is 1 based. The output from probelibraryinfo is 1 based.

Examples 1 Get the file Drosophila-121502.cel from

http://www.affymetrix.com/support/technical/sample_data/demo_data.aff

2 Read the data into MATLAB.

celStruct = affyread('Drosophila-121502.cel');
cdfStruct = affyread('D:\Affymetrix\LibFiles\...

DrosGenome1\DrosGenome1.CDF');

3 Extract probe set library information.

probeinfo = probelibraryinfo(celStruct,cdfStruct);

4 Find out which probeset the 1104th probe belongs to

cdfStruct.ProbeSets(probeinfo(1104,1)).Name

See Also Bioinformatics Toolbox functions affyread, celintensityread,
probesetlink, probesetlookup, probesetvalues

2-368

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

probesetlink

Purpose Link to NetAffx Web site

Syntax probesetlink(AFFYStruct, ID)
URL = probesetlink(AFFYStruct, ID)
probesetlink(..., 'PropertyName', PropertyValue,...)
probesetlink(..., 'Source', SourceValue),
probesetlink(..., 'Browser', BrowserValue)
probesetlink(..., 'NoDisplay', NoDisplayValue)

Description probesetlink(AFFYStruct, ID) displays information from the
NetAffx Web site about a probe set (ID) from the CHP or CDF structure
(AFFYStruct). ID can be the index of the probe set or the probe set
name.

URL = probesetlink(AFFYStruct, ID) returns the URL for the
information.

probesetlink(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

probesetlink(..., 'Source', SourceValue), when SourceValue is
true, links to the data source (e.g. GenBank, Flybase) for the probe set.

probesetlink(..., 'Browser', BrowserValue), when BrowserValue
is true, displays the information in the system Web browser.

probesetlink(..., 'NoDisplay', NoDisplayValue), when
NoDisplayValue is true, returns the URL but does not open a browser.

Note: NetAffx Web site requires you to register and provide a user
name and password.

Examples 1 Get the file Drosophila-121502.chp from

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

2 Read the data into MATLAB.

chpStruct = affyread('Drosophila-121502.chp',...
'D:\Affymetrix\LibFiles\DrosGenome1')

2-369

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

probesetlink

3 Display information from the NetAffx Web site.

probesetlink(chpStruct,'AFFX-YEL018w/_at');

See Also Bioinformatics Toolbox functions affyread, celintensityread,
probesetlookup, probesetplot, probelibraryinfo, probesetvalues

2-370

probesetlookup

Purpose Gene name for probe set

Syntax probesetlookup(AFFYStruct, ID)
probesetlookup(AFFYStruct, Name)
[Name, NDX, Description, Source, SourceURL] = probesetlookup(...)

Description probesetlookup(AFFYStruct, ID) returns the gene name for a probe
set ID from a CHP or CDF structure (AFFYStruct).

probesetlookup(AFFYStruct, Name) returns the probe set ID for a
gene name (Name) from a CHP or CDF structure (AFFYStruct).

[Name, NDX, Description, Source, SourceURL] =
probesetlookup(...) returns the name, index into the CHP or CDF
struct, , description, source, and source URL and for the probe set.

Examples 1 Get the file Drosophila-121502.chp from

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

2 Read the data into MATLAB.

chpStruct = affyread('Drosophila-121502.chp',...
'D:\Affymetrix\LibFiles\DrosGenome1')

3 Get the gene name.

probesetlookup(chpStruct,'AFFX-YEL018w/_at')

See Also Bioinformatics Toolbox functions affyread, celintensityread,
probelibraryinfo, probesetlink, probesetplot, probesetvalues,
rmabackadj

2-371

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

probesetplot

Purpose Plot values for Affymetrix CHP file probe set

Syntax probesetplot(CHPStruct, ID, 'PropertyName', PropertyValue)
probesetplot(..., 'GeneName', GeneNameValue)
probesetplot(..., 'Field', FieldValue)
probesetplot(..., 'ShowStats',ShowStatsValue)

Description probesetplot(CHPStruct, ID, 'PropertyName', PropertyValue)
plots the PM and MM intensity values for probe set ID. CHPStruct is a
structure created from an Affymetrix CHP file. ID can be the index of
the probe set or the probe set name. Note: the probe set numbers for
a CHP file use 0 based indexing while MATLAB uses 1 based indexing.
CHPStruct.ProbeSets(1) has ProbeSetNumber 0.

probesetplot(..., 'GeneName', GeneNameValue) when GeneName is
true, uses the gene name, rather than the probeset name for the title.

probesetplot(..., 'Field', FieldValue) shows the data for a field
(FieldValue). Valid fieldnames are: Background, Intensity, StdDev,
Pixels, and Outlier.

probesetplot(..., 'ShowStats',ShowStatsValue) when ShowStats
is true, adds mean and standard deviation lines to the plot.

Examples 1 Get the file Drosophila-121502.chp from

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

2 Read the data into MATLAB.

chpStruct = affyread('Drosophila-121502.chp',...
'D:\Affymetrix\LibFiles\DrosGenome1')

3 Plots PM and MM intensity values.

probesetplot(chpStruct,'AFFX-YEL018w/_at','showstats',true);

See Also Bioinformatics Toolbox functions affyread, celintensityread,
probesetlink, probesetlookup

2-372

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

probesetvalues

Purpose Probe set values from probe results

Syntax PSValues = probesetvalues(CELStruct,CDFStruct,PS)

Description PSValues = probesetvalues(CELStruct,CDFStruct,PS) creates a table
of values for a probe set (PS) from the probe data in a CEL file structure
(CELStruct). PS is a probe set index or probe set name from the CDF
library file structure (CDFStruct). PSValues is a matrix with 18
columns and one row for each probe pair in the probe set. The columns
correspond to the fields in a CHP probe set data structure:

'ProbeSetNumber'
'ProbePairNumber'
'UseProbePair'
'Background'
'PMPosX'
'PMPosY'
'PMIntensity'
'PMStdDev'
'PMPixels'
'PMOutlier'
'PMMasked'
'MMPosX'
'MMPosY'
'MMIntensity'
'MMStdDev'
'MMPixels'
'MMOutlier'
'MMMasked'

There are some minor differences between the output of this function
and the data in a CHP file. The PM and MM Intensity values in the CHP
file are normalized by the Affymetrix software. This function returns
the raw intensity values. The 'UseProbePair' and 'Background' fields
are only returned by this function for compatibility with the CHP probe
set data structure and are always set to zero.

2-373

probesetvalues

Examples 1 Get the file Drosophila-121502.cel from

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

2 Read the data into MATLAB.

celStruct = affyread('Drosophila-121502.cel');
cdfStruct = affyread('D:\Affymetrix\LibFiles\DrosGenome1\...

DrosGenome1.CDF');

3 Get the values for probe set 147439_at.

psvals = probesetvalues(celStruct,cdfStruct,'147439_at')

See Also Bioinformatics Toolbox functions affyread, celintensityread,
probelibraryinfo, probesetlink, probesetlookup, rmabackadj,

2-374

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

profalign

Purpose Align two profiles using Needleman-Wunsch global alignment

Syntax Prof = profalign(Prof1, Prof2)
[Prof, H1, H2] = profalign(Prof1, Prof2)
profalign(..., 'PropertyName', PropertyValue,...)
profalign(..., 'ScoringMatrix', ScoringMatrixValue)
profalign(..., 'GapOpen', {G1Value, G2Value})
profalign(..., 'ExtendGap', {E1Value, E2Value})
profalign(..., 'ExistingGapAdjust', ExistingGapAdjustValue)
profalign(..., 'TerminalGapAdjust', TerminalGapAdjustValue)
profalign(..., 'ShowScore', ShowScoreValue)

Description Prof = profalign(Prof1, Prof2) returns a new profile (Prof) for the
optimal global alignment of two profiles (Prof1, Prof2). The profiles
(Prof1, Prof2) are numeric arrays of size [(4 or 5 or 20 or 21) x
Profile Length] with counts or weighted profiles. Weighted profiles
are used to down-weight similar sequences and up-weight divergent
sequences. The output profile is a numeric matrix of size [(5 or 21)
x New Profile Length] where the last row represents gaps. Original
gaps in the input profiles are preserved. The output profile is the result
of adding the aligned columns of the input profiles.

[Prof, H1, H2] = profalign(Prof1, Prof2) returns pointers that
indicate how to rearrange the columns of the original profiles into the
new profile.

profalign(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

profalign(..., 'ScoringMatrix', ScoringMatrixValue) defines the
scoring matrix (ScoringMatrixValue) to be used for the alignment.
The default is 'BLOSUM50' for amino acids or 'NUC44' for nucleotide
sequences.

profalign(..., 'GapOpen', {G1Value, G2Value}) sets the penalties
for opening a gap in the first and second profiles respectively. G1Value
and G2Value can be either scalars or vectors. When using a vector, the
number of elements is one more than the length of the input profile.
Every element indicates the position specific penalty for opening a gap

2-375

profalign

between two consecutive symbols in the sequence. The first and the last
elements are the gap penalties used at the ends of the sequence. The
default gap open penalties are {10,10}.

profalign(..., 'ExtendGap', {E1Value, E2Value}) sets the
penalties for extending a gap in the first and second profile respectively.
E1Value and E2Value can be either scalars or vectors. When using
a vector, the number of elements is one more than the length of the
input profile. Every element indicates the position specific penalty for
extending a gap between two consecutive symbols in the sequence. The
first and the last elements are the gap penalties used at the ends of the
sequence. If ExtendedGap is not specified, then extensions to gaps are
scored with the same value as GapOpen.

profalign(..., 'ExistingGapAdjust', ExistingGapAdjustValue), if
ExistingGapAdjustValue is false, turns off the automatic adjustment
based on existing gaps of the position-specific penalties for opening a
gap. When ExistingGapAdjustValue is true, for every profile position,
profalign proportionally lowers the penalty for opening a gap toward
the penalty of extending a gap based on the proportion of gaps found in
the contiguous symbols and on the weight of the input profile.

profalign(..., 'TerminalGapAdjust', TerminalGapAdjustValue),
when TerminalGapAdjustValue is true, adjusts the penalty for
opening a gap at the ends of the sequence to be equal to the penalty for
extending a gap. Default is false.

profalign(..., 'ShowScore', ShowScoreValue), when
ShowScoreValue is true, displays the scoring space and the winning
path.

Examples 1 Read in sequences and create profiles.

ma1 = ['RGTANCDMQDA';'RGTAHCDMQDA';'RRRAPCDL-DA'];
ma2 = ['RGTHCDLADAT';'RGTACDMADAA'];
p1 = seqprofile(ma1,'gaps','all','counts',true);
p2 = seqprofile(ma2,'counts',true);

2 Merge two profiles into a single one by aligning them.

2-376

profalign

p = profalign(p1,p2);
seqlogo(p)

3 Use the output pointers to generate the multiple alignment.

[p, h1, h2] = profalign(p1,p2);
ma = repmat('-',5,12);
ma(1:3,h1) = ma1;
ma(4:5,h2) = ma2;
disp(ma)

4 Increase the gap penalty before cysteine in the second profile.

gapVec = 10 + [p2(aa2int('C'),:) 0] * 10
p3 = profalign(p1,p2,'gapopen',{10,gapVec});
seqlogo(p3)

5 Add a new sequence to a profile without inserting new gaps into the
profile.

gapVec = [0 inf(1,11) 0];
p4 = profalign(p3,seqprofile('PLHFMSVLWDVQQWP'),...

gapopen',{gapVec,10});
seqlogo(p4)

See Also Bioinformatics Toolbox functions hmmprofalign, multialign, nwalign,
seqprofile, seqconsensus

2-377

proteinplot

Purpose Characteristics for amino acid sequences

Syntax proteinplot (SeqAA)

Arguments
SeqAA Amino acid sequence or a structure with a field Sequence

containing an amino acid sequence.

Description proteinplot (SeqAA) loads an amino acid sequence into the protein plot
GUI. proteinplot is a tool for analyzing a single amino acid sequence.
You can use the results from proteinplot to compare the properties
of several amino acid sequences. It displays smoothed line plots of
various properties such as the hydrophobicity of the amino acids in
the sequence.

Importing sequences into proteinplot

1 In the MATLAB Command Window, type

proteinplot(Seq_AA)

The proteinplot interface opens and the sequence Seq_AA is shown
in the Sequence text box.

2 Alternatively, type or paste an amino acid sequence into the
Sequence text box.

You can can import a sequence with the Import dialog box.

1 Click the Import Sequence button. The Import dialog box opens.

2 From the Import From list, select, a variable in the MATLAB
workspace, ASCII text file, FASTA formatted file, GenPept formatted
file, or accession number in the GenPept database.

Information about the properties

2-378

proteinplot

You can also access information about the properties from the Help
menu.

1 From the Help menu, click References. The Help Browser opens
with a list of properties and references.

2 Scroll down to locate the property you are interested in studying.

Working with Properties

When you click on a property a smoothed plot of the property values
along the sequence will be displayed. Multiple properties can be
selected from the list by holding down Shift or Ctrl while selecting
properties. When two properties are selected, the plots are displayed
using a PLOTYY-style layout, with one Y axis on the left and one on
the right. For all other selections, a single Y axis is displayed. When
displaying one or two properties, the Y values displayed are the actual
property values. When three or more properties are displayed, the
values are normalized to the range 0-1.

You can add your own property values by clicking on the Add button
next to the property list. This will open up a dialog that allows you to
specify the values for each of the amino acids. The Display Text box
allows you to specify the text that will be displayed in the selection box
on the main proteinplot window. You can also save the property values
to an m-file for future use by typing a file name into the Filename box.

The Terminal Selection boxes allow you to choose to plot only part of
the sequence. By default all of the sequence is plotted. The default
smoothing method is an unweighted linear moving average with
a window length of five residues. You can change this using the
"Configuration Values" dialog from the Edit menu. The dialog allows
you to select the window length from 5 to 29 residues. You can modify
the shape of the smoothing window by changing the edge weighting
factor. And you can choose the smoothing function to be a linear moving
average, an exponential moving average or a linear Lowess smoothing.

The File menu allows you to Import a sequence, save the plot that you
have created to a FIG file, you can export the data values in the figure

2-379

proteinplot

to a workspace variable or to a MAT file, you can export the figure to a
normal figure window for customizing, and you can print the figure.

The Edit menu allows you to create a new property, to reset the property
values to the default values, and to modify the smoothing parameters
with the Configuration Values menu item.

The View menu allows you to turn the toolbar on and off, and to add
a legend to the plot.

The Tools menu allows you to zoom in and zoom out of the plot, to view
Data Statistics such as mean, minimum and maximum values of the
plot, and to normalize the values of the plot from 0 to 1.

The Help menu allows you to view this document and to see the
references for the sequence properties built into proteinplot

See Also Bioinformatics Toolbox functions aacount, atomiccomp, molweight,
pdbdistplot, pdbplot, seqtool

MATLAB function plotyy

2-380

prune (phytree)

Purpose Remove branch nodes from phylogenetic tree

Syntax T2 = prune(T1, Nodes)
T2 = prune(T1, Nodes, 'Mode','Exclusive')

Arguments
T1 Phylogenetic tree object. See phytree.

Nodes Nodes to remove from tree.

Mode Property to control the method of pruning.
Enter either 'Inclusive' or 'Exclusive'. The
default value is 'Inclusive'.

Description T2 = prune(T1, Nodes)removes the nodes listed in the vector Nodes
from the tree T1. prune removes any branch or leaf node listed in Nodes
and all their descendants from the tree T1, and returns the modified
tree T2. The parent nodes are connected to the ’brothers’ as required.
Nodes in the tree are labeled as [1:numLeaves] for the leaves and as
[numLeaves+1:numLeaves+numBranches] for the branches. Nodes can
also be a logical array of size [numLeaves+numBranches x 1] indicating
the nodes to be removed.

T2 = prune(T1, Nodes, 'Mode','Exclusive')changes the property
(Mode) for pruning to 'Exclusive' and removes only the descendants
of the nodes listed in the vector Nodes. Nodes that do not have a
predecessor become leaves in the list Nodes. In this case, pruning is the
process of reducing a tree by turning some branch nodes into leaf nodes,
and removing the leaf nodes under the original branch.

Examples Load a phylogenetic tree created from a protein family

tr = phytreeread('pf00002.tree');
view(tr)

% To :

Remove all the ’mouse’ proteins use

2-381

prune (phytree)

ind = getbyname(tr,'mouse');
tr = prune(tr,ind);
view(tr)

Remove potential outliers in the tree

[sel,sel_leaves] = select(tr,'criteria','distance',...
'threshold',.3,...
'reference','leaves',...
'exclude','leaves',...
'propagate','toleaves');

tr = prune(tr,~sel_leaves)
view(tr)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreetool

• phytree object methods — select, get

2-382

quantilenorm

Purpose Quantile normalization over multiple arrays

Syntax NORMDATA = quantilenorm(DATA)
NORMDATA = quantilenorm(...,'MEDIAN',true)
NORMDATA = quantilenorm(...,'DISPLAY',true)

Description NORMDATA = quantilenorm(DATA), where the columns of DATA
correspond to separate chips, normalizes the distributions of the
values in each column. Note that if DATA contains NaN values, then
NORMDATA will also contain NaNs at the corresponding positions.

NORMDATA = quantilenorm(...,'MEDIAN',true) takes the median of
the ranked values instead of the mean.

NORMDATA = quantilenorm(...,'DISPLAY',true) plots the
distributions of the columns and of the normalized data.

Examples load yeastdata
normYeastValues = quantilenorm(yeastvalues,'display',1);

See Also malowess, manorm, rmabackadj, rmasummary

2-383

ramachandran

Purpose Draw Ramachandran plot for Protein Data Bank (PDB) data

Syntax ramachandran('PDBid')
ramachandran('File')
ramachandran(PDBData)
Angles = ramachandran(...)
[Angles, Handle] = ramachandran(...)

Arguments
PDBid Unique identifier for a protein structure record. Each

structure in the PDB is represented by a 4-character
alphanumeric identifier. For example, 4hhb is the
identification code for hemoglobin.

File Protein Data Bank (PDB) formatted file (ASCII text
file). Enter a filename, a path and filename, or a URL
pointing to a file. File can also be a MATLAB character
array that contains the text for a PDB file.

PDBData MATLAB structure with PDB formatted data.

Description ramachandran generates a plot of the torsion angle PHI (torsion angle
between the 'C-N-CA-C' atoms) and the torsion angle PSI (torsion
angle between the 'N-CA-C-N' atoms) of the protein sequence.

ramachandran('PDBid') generates the Ramachandran plot for the
protein with PDB code ID.

ramachandran('File') generates the Ramachandran plot for protein
stored in the PDB file File.

ramachandran(PDBData) generates the Ramachandran plot for the
protein stored in the structure PDBData, where PDBData is a MATLAB
structure obtained by using pdbread or getpdb.

Angles = ramachandran(...) returns an array of the torsion angles
PHI, PSI, and OMEGA for the residue sequence.

[Angles, Handle] = ramachandran(...) returns a handle to the plot.

2-384

ramachandran

Examples Generate the Ramachandran plot for the human serum albumin
complexed with octadecanoic acid.

ramachandran('1E7I')

See Also Bioinformatics Toolbox functions getpdb, pdbdistplot, pdbread,
pdbplot

2-385

randfeatures

Purpose Generate randomized subset of features

Syntax [IDX, Z] = randfeatures(X, Group, 'PropertyName',
PropertyValue...)
randfeatures(..., 'Classifier', C)
randfeatures(..., 'ClassOptions', CO)
randfeatures(..., 'PerformanceThreshold', PT)
randfeatures(..., 'ConfidenceThreshold', CT)
randfeatures(..., 'SubsetSize', SS)
randfeatures(..., 'PoolSize', PS)
randfeatures(..., 'NumberOfIndices', N)
randfeatures(..., 'CrossNorm', CN)
randfeatures(..., 'Verbose', VerboseValue)

Description [IDX, Z] = randfeatures(X, Group, 'PropertyName',
PropertyValue...) performs a randomized subset feature search
reinforced by classification. randfeatures randomly generates subsets
of features used to classify the samples. Every subset is evaluated with
the apparent error. Only the best subsets are kept, and they are joined
into a single final pool. The cardinality for every feature in the pool
gives the measurement of the significance.

X contains the training samples. Every column of X is an observed
vector. Group contains the class labels. Group can be a numeric vector
or a cell array of strings; numel(Group) must be the same as the
number of columns in X, and numel(unique(Group)) must be greater
than or equal to 2. Z is the classification significance for every feature.
IDX contains the indices after sorting Z; i.e., the first one points to the
most significant feature.

randfeatures(..., 'Classifier', C) sets the classifier. Options are

'da' (default) Discriminant analysis
'knn' K nearest neighbors

randfeatures(..., 'ClassOptions', CO)is a cell with
extra options for the selected classifier. Defaults are

2-386

randfeatures

{5,'correlation','consensus'} for KNN and {'linear'} for DA. See
knnclassify and classify for more information.

randfeatures(..., 'PerformanceThreshold', PT) sets the correct
classification threshold used to pick the subsets included in the final
pool. Default is 0.8 (80%).

randfeatures(..., 'ConfidenceThreshold', CT) uses the posterior
probability of the discriminant analysis to invalidate classified
subvectors with low confidence. This option is only valid when
Classifier is 'da'. Using it has the same effect as using 'consensus'
in KNN; i.e., it makes the selection of approved subsets very stringent.
Default is 0.95.^(number of classes).

randfeatures(..., 'SubsetSize', SS) sets the number of features
considered in every subset. Default is 20.

randfeatures(..., 'PoolSize', PS) sets the targeted number of
accepted subsets for the final pool. Default is 1000.

randfeatures(..., 'NumberOfIndices', N) sets the number of
output indices in IDX. Default is the same as the number of features.

randfeatures(..., 'CrossNorm', CN) applies independent
normalization across the observations for every feature.
Cross-normalization ensures comparability among different features,
although it is not always necessary because the selected classifier
properties might already account for this. Options are

'none' (default) Intensities are not cross-normalized.
'meanvar' x_new = (x - mean(x))/std(x)
'softmax' x_new = (1+exp((mean(x)-x)/std(x)))^-1
'minmax' x_new = (x - min(x))/(max(x)-min(x))

randfeatures(..., 'Verbose', VerboseValue), when Verbose is
true, turns off verbosity. Default is true.

Examples Find a reduced set of genes that is sufficient for classification of all the
cancer types in the t-matrix NCI60 data set. Load sample data.

2-387

randfeatures

load NCI60tmatrix

Select features.

I = randfeatures(X,GROUP,'SubsetSize',15,'Classifier','da');

Test features with a linear discriminant classifier.

C = classify(X(I(1:25),:)',X(I(1:25),:)',GROUP);
cp = classperf(GROUP,C);
cp.CorrectRate

See Also Bioinformatics Toolbox functions classperf, crossvalind,
rankfeatures, svmclassify

Statistics Toolbox function classify

2-388

randseq

Purpose Generate random sequence from finite alphabet

Syntax Seq = randseq(SeqLength)
randseq(..., 'PropertyName', PropertyValue,...)
randseq(..., 'Alphabet', AlphabetValue)
randseq(..., 'Weights', WeightsValue)
randseq(..., 'FromStructure', FromStructureValue)
randseq(..., 'Case', CaseValue)
randseq(..., 'DataType', DataTypeValue)

Arguments
Length Number of nucleotide bases or amino acids.

AlphabetValue Property to select the alphabet for the
sequence. Enter 'dna'(default), 'rna', or
'amino'.

WeightsValue Property to specify a weighted random
sequence.

FromStructureValue Property to specify a weighted random
sequence using output structures from the
functions from basecount, dimercount,
codoncount, or aacount.

CaseValue Property to select the case of letters in
a sequence when Alphabet is 'char'.
Values are'upper' (default) or 'lower'.

DataTypeValue Property to select the data type for a
sequence. Values are 'char'(default) for
letter sequences, and 'uint8' or 'double'
for numeric sequences.

Creates a sequence as an array of DataType.

Description Seq = randseq(SeqLength) creates a random sequence with a specified
length (SeqLength)

2-389

randseq

randseq(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

randseq(..., 'Alphabet', AlphabetValue) generates a sequence
from a specific alphabet.

randseq(..., 'Weights', WeightsValue) creates a weighted random
sequence where the ith letter of the sequence alphabet is selected
with weight W(i). The weight vector is usually a probability vector or
a frequency count vector. Note that the ith element of the nucleotide
alphabet is given by int2nt(i), and the ith element of the amino acid
alphabet is given by int2aa(i).

randseq(..., 'FromStructure', FromStructureValue) creates a
weighted random sequence with weights given by the output structure
from basecount, dimercount, codoncount, or aacount.

randseq(..., 'Case', CaseValue) specifies the case for a letter
sequence.

randseq(..., 'DataType', DataTypeValue) specifies the data type for
the sequence array.

Examples Generate a random DNA sequence.

randseq(20)

ans =
TAGCTGGCCAAGCGAGCTTG

Generate a random RNA sequence.

randseq(20,'alphabet','rna')

ans =
GCUGCGGCGGUUGUAUCCUG

Generate a random protein sequence.

randseq(20,'alphabet','amino')

2-390

randseq

ans =
DYKMCLYEFGMFGHFTGHKK

See Also Statistics Toolbox

• functions — hmmgenerate, randsample

MATLAB

• functions — rand, randperm

2-391

rankfeatures

Purpose Rank key features by class separability criteria

Syntax [IDX, Z] = rankfeatures(X, Group)
rankfeatures(..., 'PropertyName', PropertyValue,...)
rankfeatures(..., 'Criterion', CriterionValue)
rankfeatures(..., 'CCWeighting', ALPHA)
rankfeatures(..., 'NWeighting', BETA)
rankfeatures(..., 'NumberOfIndices', N)
rankfeatures(..., 'CrossNorm', CN)

Description [IDX, Z] = rankfeatures(X, Group) ranks the features in X using
an independent evaluation criterion for binary classification. X is a
matrix where every column is an observed vector and the number of
rows corresponds to the original number of features. Group contains
the class labels.

IDX is the list of indices to the rows in X with the most significant
features. Z is the absolute value of the criterion used (see below).

Group can be a numeric vector or a cell array of strings; numel(Group)
is the same as the number of columns in X, and numel(unique(Group))
is equal to 2.

rankfeatures(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

rankfeatures(..., 'Criterion', CriterionValue)sets the criterion
used to assess the significance of every feature for separating two
labeled groups. Options are

'ttest'
(default)

Absolute value two-sample T-test with pooled
variance estimate

'entropy' Relative entropy, also known as Kullback-Lieber
distance or divergence

'brattacharyya' Minimum attainable classification error or
Chernoff bound

2-392

rankfeatures

'roc' Area under the empirical receiver operating
characteristic (ROC) curve

'wilcoxon' Absolute value of the u-statistic of a two-sample
unpaired Wilcoxon test, also known as
Mann-Whitney

Notes: 1) 'ttest', 'entropy', and 'brattacharyya' assume normal
distributed classes while 'roc' and 'wilcoxon' are nonparametric
tests. 2) All tests are feature independent.

rankfeatures(..., 'CCWeighting', ALPHA) uses correlation
information to outweigh the Z value of potential features using Z *
(1-ALPHA*(RHO)) where RHO is the average of the absolute values of
the cross-correlation coefficient between the candidate feature and all
previously selected features. ALPHA sets the weighting factor. It is a
scalar value between 0 and 1. When ALPHA is 0 (default) potential
features are not weighted. A large value of RHO (close to 1) outweighs
the significance statistic; this means that features that are highly
correlated with the features already picked are less likely to be included
in the output list.

rankfeatures(..., 'NWeighting', BETA) uses regional
information to outweigh the Z value of potential features using Z *
(1-exp(-(DIST/BETA).^2)) where DIST is the distance (in rows)
between the candidate feature and previously selected features. BETA
sets the weighting factor. It is greater than or equal to 0. When BETA is
0 (default) potential features are not weighted. A small DIST (close to 0)
outweighs the significance statistics of only close features. This means
that features that are close to already picked features are less likely
to be included in the output list. This option is useful for extracting
features from time series with temporal correlation.

BETA can also be a function of the feature location, specified using @ or
an anonymous function. In both cases rankfeatures passes the row
position of the feature to BETA() and expects back a value greater
than or equal to 0.

Note: You can use CCWeighting and NWeighting together.

2-393

rankfeatures

rankfeatures(..., 'NumberOfIndices', N) sets the number of
output indices in IDX. Default is the same as the number of features
when ALPHA and BETA are 0, or 20 otherwise.

rankfeatures(..., 'CrossNorm', CN) applies independent
normalization across the observations for every feature.
Cross-normalization ensures comparability among different features,
although it is not always necessary because the selected criterion might
already account for this. Options are

'none'
(default)

Intensities are not cross-normalized.

'meanvar' x_new = (x - mean(x))/std(x)

'softmax' x_new = (1+exp((mean(x)-x)/std(x)))^-1

'minmax' x_new = (x - min(x))/(max(x)-min(x))

Examples 1 Find a reduced set of genes that is sufficient for differentiating breast
cancer cells from all other types of cancer in the t-matrix NCI60 data
set. Load sample data.

load NCI60tmatrix

2 Get a logical index vector to the breast cancer cells.

BC = GROUP == 8;

3 Select features.

I = rankfeatures(X,BC,'NumberOfIndices',12);

4 Test features with a linear discriminant classifier.

C = classify(X(I,:)',X(I,:)',double(BC));
cp = classperf(BC,C);
cp.CorrectRate

2-394

rankfeatures

5 Use cross-correlation weighting to further reduce the required
number of genes.

I = rankfeatures(X,BC,'CCWeighting',0.7,'NumberOfIndices',8);
C = classify(X(I,:)',X(I,:)',double(BC));
cp = classperf(BC,C);
cp.CorrectRate

6 Find the discriminant peaks of two groups of signals with Gaussian
pulses modulated by two different sources load GaussianPulses.

f = rankfeatures(y',grp,'NWeighting',@(x) x/10+5,'NumberOfIndices'
plot(t,y(grp==1,:),'b',t,y(grp==2,:),'g',t(f),1.35,'vr')

See Also Statistics Toolbox functions classify, classperf, crossvalind,
randfeatures, svmclassify

2-395

rebasecuts

Purpose Find restriction enzymes that cut protein sequence

Syntax [Enzymes, Sites] = rebasecuts(SeqNT)
rebasecuts(SeqNT, Group)
rebasecuts(SeqNT, [Q, R])
rebasecuts(SeqNT, S)

Arguments
SeqNT Nucleotide sequence.

Enzymes Cell array with the names of restriction enzymes
from REBASE Version 412.

Sites Vector of cut sites with the base number before
every cut relative to the sequence.

Group Cell array with the names of valid restriction
enzymes.

Q, R, S Base positions.

Description [Enzymes, Sites] = rebasecuts(SeqNT) finds all the restriction
enzymes that cut a nucleotide sequence (SeqNT).

rebasecuts(SeqNT, Group) limits the search to a specified list of
enzymes (Group).

rebasecuts(SeqNT, [Q, R]) limits the search to those enzymes that
cut after a specified base position (Q) and before a specified base position
(R) relative to the sequence.

rebasecuts(SeqNT, S) limits the search to those enzymes that cut just
after a specified base position (S).

REBASE, the Restriction Enzyme Database, is a collection of
information about restriction enzymes and related proteins. For more
information about REBASE, see

http://rebase.neb.com/rebase/rebase.html

2-396

rebasecuts

Example 1 Enter a nucleotide sequence.

seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA'

2 Look for all possible cleavage sites in the sequence seq.

[enzymes sites] = rebasecuts(seq)

3 Find where restriction enzymes CfoI and Tru9I cut the sequence.

[enzymes sites] = rebasecuts(seq, {'CfoI','Tru9I'})

4 Search for any possible enzymes that cut after base 7.

enzymes = rebasecuts(seq, 7)

5 Get the subset of enzymes that cut between base 11 and 37.

enzymes = rebasecuts(seq, [11 37])

See Also Bioinformatics Toolbox functions cleave, seq2regexp, seqshowwords,
restrict

MATLAB function regexp

2-397

redgreencmap

Purpose Red and green colormap

Syntax redgreencmap(Length)

Arguments
Length Length of the colormap. Enter either 256 or 64.

The default value is the length of the colormap
of the current figure.

Description redgreencmap(Length) returns an M-by-3 matrix containing a red and
green colormap. Low values are bright green, values in the center of the
map are black, and high values are red.

redgreencmap, by itself, is the same length as the current colormap.

Examples Reset the color map of the current figure.

pd =gprread('mouse_a1pd.gpr')
maimage(pd,'F635 Median')
colormap(redgreencmap)

See Also Bioinformatics Toolbox function clustergram

MATLAB functions colormap, colormapeditor

2-398

reroot (phytree)

Purpose Change root of phylogenetic tree

Syntax Tree2 = reroot(Tree1)
Tree2 = reroot(Tree1, Node)
Tree2 = reroot(Tree1, Node, Distance)

Arguments
Tree1 Phylogenetic tree (phytree object) created with

the function phytree.

Node Node index returned by the phytree object
method getbyname.

Distance Distance from the reference branch.

Description Tree2 = reroot(Tree1) changes the root of a phylogenetic tree (Tree1)
using a midpoint method. The midpoint is the location where the mean
values of the branch lengths, on either side of the tree, are equalized.
The original root is deleted from the tree.

Tree2 = reroot(Tree1, Node) changes the root of a phylogenetic tree
(Tree1) to a branch node using the node index (Node). The new root is
placed at half the distance between the branch node and its parent.

Tree2 = reroot(Tree1, Node, Distance) changes the root of a
phylogenetic tree (Tree1) to a new root at a given distance (Distance)
from the reference branch node (Node) toward the original root of the
tree. Note: The new branch representing the root in the new tree
(Tree2) is labeled 'Root'.

Examples 1 Create an ultrametric tree.

tr_1 = phytree([5 7;8 9;6 11; 1 2;3 4;10 12;...
14 16; 15 17;13 18])

plot(tr_1,'branchlabels',true)

MATLAB draws a figure with the phylogenetic tree.

2-399

reroot (phytree)

2 Place the root at 'Branch 7'.

sel = getbyname(tr_1,'Branch 7');
tr_2 = reroot(tr_1,sel)
plot(tr_2,'branchlabels',true)

MATLAB draws a tree with the root moved to the center of branch 7.

2-400

reroot (phytree)

3 Move the root to a branch that makes the tree as ultrametric as
possible.

tr_3 = reroot(tr_2)
plot(tr_3,'branchlabels',true)

MATLAB draws the new tree with the root moved from the center
of branch 7 to branch 8.

2-401

reroot (phytree)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), seqneighjoin

• phytree object methods — get, getbyname, prune, select

2-402

restrict

Purpose Split nucleotide sequence at restriction site

Syntax Fragments = restrict(SeqNT, Enzyme)
Fragments = restrict(SeqNT, Pattern, Position)
[Fragments, CuttingSites] = restrict(...)
[Fragments, CuttingSites, Lengths] = restrict(...)
restrict(..., 'PropertyName', PropertyValue,...)
restrict(..., 'PartialDigest', PartialDigestValue)

Arguments
SeqNT Nucleotide sequence. Enter either a character

string with the characters A, T, G, C, and
ambiguous characters R, Y, K, M, S, W, B, D, H, V,
N, or a vector of integers. You can also enter a
structure with the field Sequence.

Enzyme Enter the name of a restriction enzyme from
REBASE Version 412.

Pattern Enter a short nucleotide pattern. Pattern can
be a regular expression.

Position Defines the position on Pattern where the
sequence is cut. Position=0 corresponds to
the 5’ end of the Pattern.

PartialDigestValue Property to specify a probability for partial
digestion. Enter a value from 0 to 1.

Description Fragments = restrict(SeqNT, Enzyme) cuts a sequence (SeqNT) into
fragments at the restriction sites of a restriction enzyme (Enzyme). The
returned values are stored in a cell array of sequences (Fragments).

2-403

restrict

Fragments = restrict(SeqNT, Pattern, Position) cuts a sequence
(SeqNT) into fragments at restriction sites specified by a nucleotide
pattern (Pattern).

[Fragments, CuttingSites] = restrict(...) returns a numeric
vector with the indices representing the cutting sites. A 0 (zero) is
added to the list so numel(Fragments)==numel(CuttingSites). You
can use CuttingSites+1 to point to the first base of every fragment
respective to the original sequence.

[Fragments, CuttingSites, Lengths] = restrict(...) returns a
numeric vector with the lengths of every fragment.

restrict(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

restrict(..., 'PartialDigest', PartialDigestValue) simulates
a partial digest where each restriction site in the sequence has a
probability (PartialDigestValue) of being cut.

REBASE, the restriction enzyme database, is a collection of information
about restriction enzymes and related proteins. For more information
about REBASE or to search REBASE for the name of a restriction
enzyme, go to the REBASE Web site at

http://rebase.neb.com/rebase/rebase.html

Example 1 Enter a nucleotide sequence.

Seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';

2 Use the recognition pattern (sequence) GCGC with the point of
cleavage at position 3 to cleave a nucleotide sequence.

fragmentsPattern = restrict(Seq,'GCGC',3)

fragmentsPattern =
'AGAGGGGTACGCG'
'CTCTGAAAAGCGGGAACCTCGTGGCG'
'CTTTATTAA'

2-404

http://rebase.neb.com/rebase/rebase.html

restrict

3 Use the restriction enzyme HspAI (recognition sequence GCGC with
the point of cleavage at position 1) to cleave a nucleotide sequence.

fragmentsEnzyme = restrict(Seq,'HspAI')

fragmentsEnzyme =
'AGAGGGGTACG'
'CGCTCTGAAAAGCGGGAACCTCGTGG'
'CGCTTTATTAA'

4 Use a regular expression for the enzyme pattern.

fragmentsRegExp = restrict(Seq,'GCG[^C]',3)

fragmentsRegExp =

'AGAGGGGTACGCGCTCTGAAAAGCG'
'GGAACCTCGTGGCGCTTTATTAA'

5 Capture the cutting sites and fragment lengths with the fragments.

[fragments, cut_sites, lengths] = restrict(Seq,'HspAI')

fragments =
'AGAGGGGTACG'
'CGCTCTGAAAAGCGGGAACCTCGTGG'
'CGCTTTATTAA'

cut_sites =
0

11
37

lengths =
11
26
11

2-405

restrict

See Also Bioinformatics Toolbox function cleave, seq2regexp, seqshowwords,
rebasecuts

MATLAB function regexp

2-406

revgeneticcode

Purpose Reverse mapping for genetic code

Syntax map = revgeneticcode
revgeneticcode(GeneticCode)
revgeneticcode(..., 'PropertyName', PropertyValue,...)
revgeneticcode(..., 'Alphabet' AlphabetValue)
revgeneticcode(..., 'ThreeLetterCodes', CodesValue)

Arguments
GeneticCode Genetic code for translating nucleotide codons

to amino acids. Enter a code number or code
name from the table Genetic Code on page 2-407
below. If you use a code name, you can truncate
the name to the first two characters of the name.

AlphabetValue Property to select the nucleotide alphabet.
Enter either 'dna' or 'rna'. The default value
is 'dna'.

CodesValue Property to select one- or three-letter amino
acid codes. Enter true for three-letter codes or
false for one-letter codes.

Genetic Code

Code Number Code Name Code Number Code Name

1 Standard 12 Alternative
Yeast Nuclear

2 Vertebrate
Mitochondrial

13 Ascidian
Mitochondrial

3 Yeast
Mitochondrial

14 Flatworm
Mitochondrial

2-407

revgeneticcode

Code Number Code Name Code Number Code Name

4 Mold,
Protozoan,
Coelenterate
Mitochondrial,
and
Mycoplasma
/Spiroplasma

15 Blepharisma
Nuclear

5 Invertebrate
Mitochondrial

16 Chlorophycean
Mitochondrial

6 Ciliate,
Dasycladacean,
and Hexamita
Nuclear

21 Trematode
Mitochondrial

9 Echinoderm
Mitochondrial

22 Scenedesmus
Obliquus
Mitochondrial

10 Euplotid
Nuclear

23 Thraustochytrium
Mitochondrial

11 Bacterial and
Plant Plastid

Description map = revgeneticcode returns a structure containing the reverse
mapping for the standard genetic code.

revgeneticcode(GeneticCode) returns a structure containing the
reverse mapping for an alternate genetic code.

revgeneticcode(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

revgeneticcode(..., 'Alphabet' AlphabetValue) defines the
nucleotide alphabet to use in the map.

2-408

revgeneticcode

revgeneticcode(..., 'ThreeLetterCodes', CodesValue) returns
the mapping structure with three-letter amino acid codes as field names
instead of the default single-letter codes if ThreeLetterCodes is true.

References [1] NCBI Web page describing genetic codes,
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

Examples moldcode = revgeneticcode(4,'Alphabet','rna');
wormcode = revgeneticcode('Flatworm Mitochondrial',...

'ThreeLetterCode',true);

map = revgeneticcode

map =

Name: 'Standard'
A: {'GCT' 'GCC' 'GCA' 'GCG'}
R: {'CGT' 'CGC' 'CGA' 'CGG' 'AGA' 'AGG'}
N: {'AAT' 'AAC'}
D: {'GAT' 'GAC'}
C: {'TGT' 'TGC'}
Q: {'CAA' 'CAG'}
E: {'GAA' 'GAG'}
G: {'GGT' 'GGC' 'GGA' 'GGG'}
H: {'CAT' 'CAC'}
I: {'ATT' 'ATC' 'ATA'}
L: {'TTA' 'TTG' 'CTT' 'CTC' 'CTA' 'CTG'}
K: {'AAA' 'AAG'}
M: {'ATG'}
F: {'TTT' 'TTC'}
P: {'CCT' 'CCC' 'CCA' 'CCG'}
S: {'TCT' 'TCC' 'TCA' 'TCG' 'AGT' 'AGC'}
T: {'ACT' 'ACC' 'ACA' 'ACG'}
W: {'TGG'}
Y: {'TAT' 'TAC'}
V: {'GTT' 'GTC' 'GTA' 'GTG'}

Stops: {'TAA' 'TAG' 'TGA'}

2-409

revgeneticcode

Starts: {'TTG' 'CTG' 'ATG'}

See Also Bioinformatics Toolbox functions aa2nt, aminolookup, baselookup,
geneticcode, nt2aa

2-410

rmabackadj

Purpose Perform background adjustment on Affymetrix microarray probe-level
data using Robust Multi-array Average (RMA) procedure

Syntax BackgroundAdjustedMatrix = rmabackadj(PMData)
BackgroundAdjustedMatrix = rmabackadj(..., 'Method',
MethodValue, ...)
BackgroundAdjustedMatrix = rmabackadj(..., 'Truncate',
TruncateValue, ...)
BackgroundAdjustedMatrix = rmabackadj(..., 'Showplot',
ShowplotValue, ...)

Arguments
PMData Matrix of intensity values where each row

corresponds to a perfect match (PM) probe and
each column corresponds to an Affymetrix CEL
file. (Each CEL file is generated from a separate
chip. All chips should be of the same type.)

MethodValue Property to control the estimation method for
the background adjustment model parameters.
Enter either 'RMA' (to use estimation method
described by Bolstad, 2005) or 'MLE' (to estimate
the parameters using maximum likelihood).
Default is 'RMA'.

TruncateValue Property to control the background noise model.
Enter either true (use a truncated Gaussian
distribution) or false (use a nontruncated
Gaussian distribution). Default is true.

ShowplotValue Property to control the plotting of a histogram
showing the distribution of PM probe intensity
values (blue) and the convoluted probability
distribution function (red), with estimated
parameters. Enter either 'all' (plot a
histogram for each column or chip) or specify a
subset of columns (chips) by entering the column
number, list of numbers, or range of numbers.

2-411

rmabackadj

For example:

• ..., 'Showplot', 3, ...) plots the
intensity values in column 3.

• ..., 'Showplot', [3,5,7], ...) plots
the intensity values in columns 3, 5, and 7.

• ..., 'Showplot', 3:9, ...) plots the
intensity values in columns 3 to 9.

Description BackgroundAdjustedMatrix = rmabackadj(PMData) returns the
background adjusted values of probe intensities in the matrix, PMData.
Note that each row in PMData corresponds to a perfect match (PM) probe
and each column in PMData corresponds to an Affymetrix CEL file.
(Each CEL file is generated from a separate chip. All chips should be of
the same type.) Details on the background adjustment are described by
Bolstad, 2005.

BackgroundAdjustedMatrix = rmabackadj(..., 'PropertyName',
PropertyValue, ...) defines optional properties that use property
name/value pairs in any order. These property name/value pairs are
as follows:

BackgroundAdjustedMatrix = rmabackadj(..., 'Method',
MethodValue, ...) controls the estimation method for the background
adjustment model parameters. When MethodValue is 'RMA',
rmabackadj implements the estimation method described by Bolstad,
2005. When MethodValue is 'MLE', rmabackadj estimates the
parameters using maximum likelihood. Default is 'RMA'.

BackgroundAdjustedMatrix = rmabackadj(..., 'Truncate',
TruncateValue, ...) controls the background noise model used. When
TruncateValue is false, rmabackadj uses nontruncated Gaussian as
the background noise model. Default is true.

BackgroundAdjustedMatrix = rmabackadj(..., 'Showplot',
ShowplotValue, ...) lets you plot a histogram showing the distribution
of PM probe intensity values (blue) and the convoluted probability

2-412

http://www.bioconductor.org/repository/devel/vignette/builtinMethods.pdf
http://www.bioconductor.org/repository/devel/vignette/builtinMethods.pdf

rmabackadj

distribution function (red), with estimated parameters. When
ShowplotValue is 'all', rmabackadj plots a histogram for each column
or chip. When ShowplotValue is a number, list of numbers, or range
of numbers, rmabackadj plots a histogram for the indicated column
number (chip).

For example:

• ..., 'Showplot', 3,...) plots the intensity values in column 3
of Data.

• ..., 'Showplot', [3,5,7],...) plots the intensity values in
columns 3, 5, and 7 of Data.

• ..., 'Showplot', 3:9,...) plots the intensity values in columns
3 to 9 of PMData.

2-413

rmabackadj

Examples 1 Load a MAT file, included with the Bioinformatics Toolbox, which
contains Affymetrix probe-level data, including pmMatrix, a matrix of
PM probe intensity values from multiple CEL files.

load prostatecancerpmdata

2 Perform background adjustment on the PM probe intensity
values in the matrix, pmMatrix, creating a new matrix,
BackgroundAdjustedMatrix.

BackgroundAdjustedMatrix = rmabackadj(pmMatrix);

2-414

rmabackadj

3 Perform background adjustment on the PM probe intensity values
in only column 3 of the matrix, pmMatrix, creating a new matrix,
BackgroundAdjustedChip3.

BackgroundAdjustedChip3 = rmabackadj(pmMatrix(:,3));

The prostatecancerpmdata.mat file used in the previous example
contains data from Best et al., 2005.

References [1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis,
K.J., Scherf, U., Speed, T.P. (2003). Exploration, Normalization, and
Summaries of High Density Oligonucleotide Array Probe Level Data.
Biostatistics 4, 249-264.

[2] Bolstad, B. (2005). “affy: Built-in Processing Methods”
http://www.bioconductor.org/repository/devel/vignette/builtinMethods.pdf

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823-6834.

See Also affyinvarsetnorm, affyread, celintensityread, probelibraryinfo,
probesetlink, probesetlookup, probesetvalues, quantilenorm,
rmasummary

2-415

http://www.bioconductor.org/repository/devel/vignette/builtinMethods.pdf

rmasummary

Purpose Calculate gene (probe set) expression values from Affymetrix microarray
probe-level data using Robust Multi-array Average (RMA) procedure

Syntax ExpressionMatrix = rmasummary(ProbeIndices, Data)
ExpressionMatrix = rmasummary(..., 'Output', OutputValue)

Arguments
ProbeIndices Column vector of probe indices. The convention

for probe indices is, for each probe set, to label
each probe 0 to N - 1, where N is the number of
probes in the probe set.

Data Matrix of natural-scale intensity values where
each row corresponds to a perfect match (PM)
probe and each column corresponds to an
Affymetrix CEL file. (Each CEL file is generated
from a separate chip. All chips should be of the
same type.)

OutputValue Property to control the scale of the returned gene
expression values. OutputValue can be:

• 'log'

• 'log2'

• 'log10'

• 'natural'

• @functionname

In the last instance, the data is transformed as
defined by the function functionname. Default
is 'log2'.

Description ExpressionMatrix = rmasummary(ProbeIndices, Data) returns gene
(probe set) expression values after calculating them from natural-scale
probe intensities in the matrix Data, using the column vector of probe

2-416

rmasummary

indices, ProbeIndices. Note that each row in Data corresponds to
a perfect match (PM) probe, and each column corresponds to an
Affymetrix CEL file. (Each CEL file is generated from a separate chip.
All chips should be of the same type.) Note that the column vector
ProbeIndices designates probes within each probe set by labeling each
probe 0 to N - 1, where N is the number of probes in the probe set. Note
that each row in ExpressionMatrix corresponds to a gene (probe set)
and each column in ExpressionMatrix corresponds to an Affymetrix
CEL file, which represents a single chip.

For a given probe set n, with J probe pairs, let Yijn denote the
background adjusted, base 2 log transformed and quantile-normalized
PM probe intensity value of chip i and probe j. Yijn follows a linear
additive model:

Yijn = Uin + Ajn + Eijn; i = 1, ..., I; j = 1, ..., J; n = 1, ..., N

where:

Uin = gene expression of the probe set n on chip i

Ajn = probe affinity effect for the jth probe in the probe set

Eijn = residual for the jth probe on the ith chip

The RMA methods assumes A1 + A2 + ... + AJ = 0 for all probe sets.
A robust procedure, median polish, is used to estimate Ui as the log
scale measure of expression.

Note There is no column in ExpressionMatrix that contains probe set
or gene information.

ExpressionMatrix = rmasummary(..., 'PropertyName',
PropertyValue, ...) defines optional properties that use property

2-417

rmasummary

name/value pairs in any order. These property name/value pairs are
as follows:

ExpressionMatrix = rmasummary(..., 'Output', OutputValue)
controls the scale of the returned gene expression values. OutputValue
can be:

• 'log'

• 'log2'

• 'log10'

• 'natural'

• @functionname

In the last instance, the data is transformed as defined by the function
functionname. Default is 'log2'.

Examples 1 Load a MAT file, included with the Bioinformatics Toolbox, which
contains Affymetrix data variables, including pmMatrix, a matrix of
PM probe intensity values from multiple CEL files.

load prostatecancerpmdata

2 Perform background adjustment on the PM probe intensity values
in the matrix, pmMatrix, using the rmabackadj function, thereby
creating a new matrix, BackgroundAdjustedMatrix.

BackgroundAdjustedMatrix = rmabackadj(pmMatrix);

3 Normalize the data in BackgroundAdjustedMatrix, using the
quantilenorm function.

NormMatrix = quantilenorm(BackgroundAdjustedMatrix);

4 Calculate gene expression values from the probe intensities in
NormMatrix, creating a new matrix, ExpressionMatrix. (You will

2-418

rmasummary

use the probeIndices column vector provided to supply information
on the probe indices.)

ExpressionMatrix = rmasummary(probeIndices, NormMatrix);

The prostatecancerpmdata.mat file used in the above previous
contains data from Best et al., 2005.

References [1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis,
K.J., Scherf, U., Speed, T.P. (2003). Exploration, Normalization, and
Summaries of High Density Oligonucleotide Array Probe Level Data.
Biostatistics. 4, 249-264.

[2] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression
(Reading, Massachusetts: Addison-Wesley Publishing Company), pp.
165-202.

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R.,
Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea,
M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik,
R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F.
(2005). Molecular alterations in primary prostate cancer after androgen
ablation therapy. Clinical Cancer Research 11, 6823-6834.

See Also affyinvarsetnorm, celintensityread, mainvarsetnorm, malowess,
manorm, quantilenorm, rmabackadj

2-419

rna2dna

Purpose Convert RNA sequence of nucleotides to DNA sequence

Syntax SeqDNA = rna2dna(SeqRNA)

Arguments
SeqRNA Nucleotide sequence for RNA. Enter a character string

with the characters A, C, U, G, and the ambiguous
nucleotide bases N, R, Y, K, M, S, W, B, D, H, and V.

Description SeqDNA = rna2dna(SeqRNA) converts any uracil nucleotides in an RNA
sequence into thymine (U–>T), and returns in the same format as DNA.
For example, if the RNA sequence is an integer sequence then so is
SeqRNA.

Example rna2dna('ACGAUGAGUCAUGCUU')

ans =
ACGATGAGTCATGCTT

See Also Bioinformatics Toolbox

• function — dna2rna

MATLAB

• functions — strrep, regexp

2-420

scfread

Purpose Read trace data from SCF file

Syntax [Sample, Probability, Comments] = scfread('File')
[A, C, T, G, ProbA, ProbC, ProbG, ProbT, Comments]
= scfread ('File')

Arguments
File SCF formatted file. Enter a filename or a path and

filename.

Description scfread reads data from a SCF formatted file into a MATLAB structure.

[Sample, Probability, Comments] = scfread('File') reads an SCF
formatted file and returns the sample data in the structure Sample,
with fields A, C, T, G, probability data in the structure Probability,
and comment information from the file in Comments.

[A, C, T, G, ProbA, ProbC, ProbG, ProbT, Comments] = scfread
('File') reads an SCF formatted file and returns the sample data and
probabilities for nucleotides in separate variables.

SCF files store data from DNA sequencing instruments. Each
file includes sample data, sequence information, and the relative
probabilities of each of the four bases. For more information on SCF
files, see

http://www.mrc-lmb.cam.ac.uk/pubseq/manual/formats_unix_2.html

Examples Examples of SCF files can be found at

ftp://ftp.ncbi.nih.gov/pub/TraceDB/example/

Unzip the file bcm-example.tgz with SCF files to your MATLAB
working directory.

[Sample, Probability, Comments] = scfread('HCIUP1D61207.scf')

Sample =

2-421

scfread

A: [10827x1 double]
C: [10827x1 double]
G: [10827x1 double]
T: [10827x1 double]

Probability =
prob_A: [742x1 double]
prob_C: [742x1 double]
prob_G: [742x1 double]
prob_T: [742x1 double]

Comments =

SIGN=A=121,C=103,G=119,T=82
SPAC= 16.25
PRIM=0
MACH=Arkansas_SN312
DYEP=DT3700POP5{BD}v2.mob
NAME=HCIUP1D61207
LANE=6
GELN=
PROC=
RTRK=
CONV=phred version=0.990722.h
COMM=
SRCE=ABI 373A or 377

See Also Bioinformatics Toolbox functions genbankread, traceplot

2-422

select (phytree)

Purpose Select tree branches and leaves in phytree object

Syntax S = select(Tree, N)
[S, Selleaves, Selbranches]
= select(...)
select(..., 'PropertyName', PropertyValue,...)
select(..., 'Reference', ReferenceValue)
select(..., 'Criteria', CriteriaValue)
select(..., 'Threshold', ThresholdValue)
select(..., 'Exclude', ExcludeValue),
select(..., 'Propagate', PropagateValue)

Arguments
Tree Phylogenetic tree (phytree object) created with

the function phytree.

N Number of closest nodes to the root node.

ReferenceValue Property to select a reference point for
measuring distance.

CriteriaValue Property to select a criteria for measuring
distance.

ThresholdValue Property to select a distance value. Nodes with
distances below this value are selected.

ExcludeValue Property to remove (exclude) branch or
leaf nodes from the output. Enter 'none',
'branchs', or 'leaves'. The default value is
'none'.

PropagateValue Property to select propagating nodes toward
the leaves or the root.

Description S = select(Tree, N) returns a logical vector (S) of size [NumNodes
x 1] indicating the N closest nodes to the root node of a phytree
object (Tree) where NumNodes = NumLeaves + NumBranches. The first
criterion select uses is branch levels, then patristic distance (also

2-423

select (phytree)

known as tree distance). By default, select uses inf as the value of N,
and select(Tree) returns a vector with values of true.

[S, Selleaves, Selbranches] = select(...) returns two additional
logical vectors, one for the selected leaves and one for the selected
branches.

select(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

select(..., 'Reference', ReferenceValue) changes the reference
point(s) to measure the closeness. Reference can be the root (default)
or leaves. When using leaves, a node can have multiple distances to
its descendant leaves (nonultrametric tree). If this the case, select
considers the minimum distance to any descendant leaf.

select(..., 'Criteria', CriteriaValue) changes the criteria
select uses to measure closeness. If C = 'levels' (default), the
first criterion is branch levels and then patristic distance. If C =
'distance', the first criterion is patristic distance and then branch
levels.

select(..., 'Threshold', ThresholdValue) selects all the
nodes where closeness is less than or equal to the threshold value
(ThresholdValue). Notice, you can also use either of the properties
'criteria' or 'reference', if N is not specified, then N = infF;
otherwise you can limit the number of selected nodes by N.

select(..., 'Exclude', ExcludeValue), when ExcludeValue =
'branches', sets a postfilter that excludes all the branch nodes from S,
or when ExcludeValue = 'leaves', all the leaf nodes . The default is
'none'.

select(..., 'Propagate', PropagateValue) activates a
postfunctionality that propagates the selected nodes to the leaves when
P=='toleaves' or toward the root finding a common ancestor when P
== 'toroot'. The default value is 'none'. P may also be 'both'. The
'Propagate' property acts after the 'Exclude' property.

2-424

select (phytree)

Examples % Load a phylogenetic tree created from a protein family:
tr = phytreeread('pf00002.tree');

% To find close products for a given protein (e.g. vips_human):
ind = getbyname(tr,'vips_human');
[sel,sel_leaves] = select(tr,'criteria','distance',...

'threshold',0.6,'reference',ind);
view(tr,sel_leaves)

% To find potential outliers in the tree, use
[sel,sel_leaves] = select(tr,'criteria','distance',...

'threshold',.3,...
'reference','leaves',...
'exclude','leaves',...
'propagate','toleaves');

view(tr,~sel_leaves)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreetool

• phytree object methods — get, pdist, prune

2-425

seq2regexp

Purpose Convert sequence with ambiguous characters to regular expression

Syntax seq2regexp(Seq)
seq2regexp(..., 'PropertyName', PropertyValue,...)
seq2regexp(..., 'Alphabet', AlphabetValue)
seq2regexp(..., 'Ambiguous', AmbiguousValue)

Arguments
Seq Amino acid or nucleotide sequence as a string of

characters. You can also enter a structure with
the field Sequence.

AlphabetValue Property to select the sequence alphabet. Enter
either 'AA' amino acids or 'NT' for nucleotides.
The default value is 'NT'.

AmbiguousValue Property to control returning ambiguous
characters in the regular expression. Enter either
true (include ambiguous characters) or false
(return only unambiguous characters). The default
value is true.

Nucleotide Conversions

Nucleotide
Letter Nucleotide Nucleotide Letter Nucleotide

A—A Adenosine S—[GC] (Strong)

C—C Cytosine W—[AT] (Weak)

G—G Guanine B—[GTC]

T—T Thymidine D—[GAT]

U—U Uridine H—[ACT]

R—[GA] (Purine) V—[GCA]

Y—[TC] (Pyrimidine) N—[AGCT] Any nucleotide

2-426

seq2regexp

Nucleotide
Letter Nucleotide Nucleotide Letter Nucleotide

K—[GT] (Keto) - — - Gap of
indeterminate
length

M—[AC] (Amino) ?—? Unknown

Amino Acid Conversion

Amino Acid Letter Description

B—[DN] Aspartic acid or
asparagine

Z—[EQ] Glutamic acid or
glutamine

X—[ARNDCQEGHILKMFPSTWYV] Any amino acid

Description seq2regexp(Seq) converts ambiguous nucleotide or amino acid symbols
in a sequence into a regular expression format using IUB/IUPAC codes.

seq2regexp(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seq2regexp(..., 'Alphabet', AlphabetValue) selects the sequence
alphabet for nucleotide sequences or amino acid sequences.

seq2regexp(..., 'Ambiguous', AmbiguousValue), when
AmbiguousValue is false, removes the ambiguous characters from the
output regular expressions. For example,

• If Seq = 'ACGTK', and AmbiguousValue is true (default), MATLAB
returns ACGT[GTK] with the unambiguous characters G, T, and
the ambiguous character K.

• If Seq = 'ACGTK', and AmbiguousValue is false, MATLAB returns
ACGT[GT] with only the unambiguous characters.

2-427

seq2regexp

Example 1 Convert a nucleotide sequence into a regular expression.

seq2regexp('ACWTMAN')

ans =
AC[ATW]T[ACM]A[ACGTRYKMSWBDHVN]

2 Remove ambiguous characters from the regular expression.

seq2regexp('ACWTMAN', 'ambiguous', false)

ans =
AC[AT]T[AC]A[ACGT]

See Also Bioinformatics Toolbox functions restrict, seqwordcount

MATLAB functions regexp, regexpi

2-428

seqcomplement

Purpose Calculate complementary strand of nucleotide sequence

Syntax SeqC = seqcomplement(SeqNT)

Arguments
SeqNT Enter either a character string with the characters A,

T (U), G, C, and ambiguous characters R, Y, K, M, S, W,
B, D, H, V, N, or a vector of integers. You can also enter
a structure with the field Sequence.

Description SeqC = seqcomplement(SeqNT) calculates the complementary strand
(A–>T, C–>G, G–>C, T–>A) of a DNA sequence and returns a sequence in
the same format as SeqNT. For example, if SeqNT is an integer sequence
then so is SeqC.

Example Return the complement of a DNA nucleotide sequence.

s = 'ATCG';
seqcomplement(s)

ans =
TAGC

See Also Bioinformatics Toolbox functions seqrcomplement, seqreverse,
seqtool

2-429

seqconsensus

Purpose Calculate consensus sequence

Syntax CSeq = seqconsensus(Seqs)
[CSeq, Score] = seqconsensus(Seqs)
CSeq = seqconsensus(Profile)
seqconsensus(..., 'PropertyName', PropertyValue,...)
seqconsensus(..., 'ScoringMatrix', ScoringMatrixValue)

Arguments
Seqs Set of multiply aligned amino acid or

nucleotide sequences. Enter an array of
strings, a cell array of strings, or an array of
structures with the field Sequence.

Profile Sequence profile. Enter a profile from the
function seqprofile. Profile is a matrix of
size [20 (or 4) x Sequence Length] with
the frequency or count of amino acids (or
nucleotides) for every position. Profile can
also have 21 (or 5) rows if gaps are included
in the consensus.

ScoringMatrixValue Scoring matrix. The default value is
BLOSUM50 for amino acid sequences or NUC44
for nucleotide sequences. ScoringMatrix
can also be a 21x21, 5x5, 20x20, or 4x4
numeric array. For the gap-included cases,
gap scores (last row/column) are set to
mean(diag(ScoringMatrix))for a gap
matching with another gap, and set to
mean(nodiag(ScoringMatrix)) for a gap
matching with another symbol

Description CSeq = seqconsensus(Seqs), for a multiply aligned set of sequences
(Seqs), returns a string with the consensus sequence (CSeq). The
frequency of symbols (20 amino acids, 4 nucleotides) in the set of
sequences is determined with the function seqprofile. For ambiguous

2-430

seqconsensus

nucleotide or amino acid symbols, the frequency or count is added to
the standard set of symbols.

[CSeq, Score] = seqconsensus(Seqs) returns the conservation score
of the consensus sequence. Scores are computed with the scoring
matrix BLOSUM50 for amino acids or NUC44 for nucleotides. Scores are
the average euclidean distance between the scored symbol and the
M-dimensional consensus value. M is the size of the alphabet. The
consensus value is the profile weighted by the scoring matrix.

CSeq = seqconsensus(Profile) returns a string with the consensus
sequence (CSeq) from a sequence profile (Profile).

seqconsensus(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqconsensus(..., 'ScoringMatrix', ScoringMatrixValue)
specifies the scoring matrix.

The following input parameters are analogous to the function
seqprofile when the alphabet is restricted to 'AA' or 'NT'.

seqconsensus(..., 'Alphabet', AlphabetValue)

seqconsensus(..., 'Gaps', GapsValue)

seqconsensus(..., 'Ambiguous', AmbiguousValue)

seqconsensus(..., 'Limits', LimitsValue)

Examples seqs = fastaread('pf00002.fa');
[C,S] = seqconsensus(seqs,'limits',[50 60],'gaps','all')

See Also Bioinformatics Toolbox functions fastaread, multialignread,
profalign, seqdisp, seqprofile

2-431

seqdisp

Purpose Format long sequence output for easy viewing

Syntax seqdisp(Seq)
seqdisp(..., 'PropertyName', PropertyValue,...)
seqdisp(..., 'Row', RowValue)
seqdisp(..., 'Column', ColumnValue)
seqdisp(..., 'ShowNumbers', ShowNumbersValue)

Arguments
Seq Nucleotide or amino acid sequence. Enter a

character array, a FASTA filename, or a MATLAB
structure with the field Sequence. Multiply aligned
sequences are allowed.

FASTA files can have the file extension fa, fasta,
fas, fsa, or fst.

Row Property to select the length of each row. Enter an
integer. The default length is 60.

Column Property to select the column width or number of
symbols before displaying a space. Enter an integer.
The default column width is 10.

ShowNumbers Property to control displaying numbers at the start
of each row. Enter either true (default) to show
numbers or false to hide numbers.

Description seqdisp(Seq) displays a sequence (Seq) in rows with a default row
length of 60 and a default column width of 10.

seqdisp(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

seqdisp(..., 'Row', RowValue) specifies the length of each row for
the displayed sequence.

2-432

seqdisp

seqdisp(..., 'Column', ColumnValue) specifies the number of letters
to display before adding a space. Row must be larger than and evenly
divisible by Column.

seqdisp(..., 'ShowNumbers', ShowNumbersValue) when
ShowNumbers is false, turns off the position numbers at the start of
each row off.

Examples Read sequence information from the GenBank database. Display the
sequence in rows with 50 letters, and within a row, separate every 10
letters with a space.

mouseHEXA = getgenbank('AK080777');
seqdisp(mouseHEXA, 'Row', 50, 'Column', 10)

Create and save a FASTA file with two sequences, and then display it.

hdr = ['Sequence A'; 'Sequence B'];
seq = ['TAGCTGRCCAAGGCCAAGCGAGCTTN';'ATCGACYGGTTCCGGTTCGCTCGAAN']
fastawrite('local.fa', hdr, seq);
seqdisp('local.fa', 'ShowNumbers', false')

ans =
>Sequence A
1 TAGCTGRCCA AGGCCAAGCG AGCTTN

>Sequence B
1 ATCGACYGGT TCCGGTTCGC TCGAAN

See Also Bioinformatics Toolbox function multialignread, seqconsensus,
seqlogo, seqprofile, seqshoworfs, seqshowwords, seqtool,
getgenbank

2-433

seqdotplot

Purpose Create dot plot of two sequences

Syntax seqdotplot (Seq1, Seq2)
seqdotplot(Seq1,Seq2, Window, Number)
Matches = seqdotplot(...)
[Matches, Matrix] = seqdotplot(...)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequences.

Enter two character strings. Do not enter
a vector of integers. You can also enter a
structure with the field Sequence.

Window Enter an integer for the size of a window.

Number Enter an integer for the number of
characters within the window that
match.

Description seqdotplot (Seq1, Seq2) plots a figure that visualizes the match
between two sequences.

seqdotplot(Seq1,Seq2, Window, Number) plots sequence matches
when there are at least Number matches in a window of size Window.

When plotting nucleotide sequences, start with a Window of 11 and
Number of 7.

Matches = seqdotplot(...) returns the number of dots in the dot
plot matrix.

[Matches, Matrix] = seqdotplot(...) returns the dotplot as a sparse
matrix.

Examples This example shows the similarities between the prion protein (PrP)
nucleotide sequences of two ruminants, the moufflon and the golden
takin.

moufflon = getgenbank('AB060288','Sequence',true);

2-434

seqdotplot

takin = getgenbank('AB060290','Sequence',true);
seqdotplot(moufflon,takin,11,7)

Matches = seqdotplot(moufflon,takin,11,7)
Matches =

5552

[Matches, Matrix] = seqdotplot(moufflon,takin,11,7)

See Also Bioinformatics Toolbox functions nwalign, swalign

2-435

seqlinkage

Purpose Construct phylogenetic tree from pairwise distances

Syntax Tree = seqlinkage(Dist)
Tree = seqlinkage(Dist, Method)
Tree = seqlinkage(Dist, Method, Names)

Arguments
Dist Pairwise distances generated from the function

seqpdist.

Method Property to select a distance method. Enter a
method from the table below.

Names Property to use alternative labels for leaf nodes.
Enter a vector of structures, with the fields
'Header' or 'Name', or a cell array of strings. In
both cases the number of elements you provide
must comply with the number of samples used to
generate the pairwise distances in Dist.

Description Tree = seqlinkage(Dist) returns a phylogenetic tree object from the
pairwise distances (Dist) between the species or products. Dist is a
matrix (or vector) such as is generated by the function seqpdist.

Tree = seqlinkage(Dist, Method) creates a phylogenetic tree object
using a specified patristic distance method. The available methods are

'single' Nearest distance (single linkage method)

'complete' Furthest distance (complete linkage method)

'average' (default) Unweighted Pair Group Method Average
(UPGMA, group average).

'weighted' Weighted Pair Group Method Average
(WPGMA)

2-436

seqlinkage

'centroid' Unweighted Pair Group Method Centroid
(UPGMC)

'median' Weighted Pair Group Method Centroid
(WPGMC)

Tree = seqlinkage(Dist, Method, Names) passes a list of names to
label the leaf nodes (for example, species or products) in a phylogenetic
tree object.

Examples % Load a multiple alignment of amino acids:
seqs = fastaread('pf00002.fa');
% Measure the 'Jukes-Cantor' pairwise distances:
dist = seqpdist(seqs,'method','jukes-cantor',...

'indels','pair');
% Build the phylogenetic tree with the single linkage
% method and pass the names of the sequences:
tree = seqlinkage(dist,'single',seqs)
view(tree)

See Also The Bioinformatics Toolbox

• functions — phytree (object constructor), phytreewrite, seqpdist,
seqneighjoin

• phytree object methods — plot, view

2-437

seqlogo

Purpose Sequence logo for nucleotide and amino acid sequences

Syntax seqlogo(Seqs)
seqlogo(Profile)
DiplayInfo = seqlogo(Seqs)
DisplayInfo = seqlogo(..., 'Displaylogo', DisplaylogoValue).
seqlogo(..., 'Alphabet', AlphabetValue)
seqlogo(..., 'Startat', StartatValue)
seqlogo(..., 'Endat', EndatValue)
seqlogo(..., 'SSCorrection', SSCorrectionValue).

Arguments Seqs Set of pairwise or multiply aligned amino acid or
nucleotide sequences. Enter an array of strings,
a cell array of strings, or an array of structures
with the field Sequence.

Displaylogo Property to control drawing a sequence logo.
Enter either true or false.

Description seqlogo(Seqs) displays a sequence logo for a set of aligned sequences
(Seqs). The logo graphically displays the sequence conservation at a
particular position in the alignment of sequences measured in bits. The
maximum sequence conservation per site is log2(4) bits for nucleotide
sequences and log2(20) bits for amino acid sequences.

seqlogo(Profile) displays a sequence logo for a sequence profile (P)
retruned by the function seqprofile.

Profile For amino acids, frequency distribution matrix of size
[20 x sequence length]. For nucleotides, matrix
of size [4 x sequence length] using the DNA
alphabet. If gaps were included, Profile may have
21 (or 5) rows , but seqlogo ignores gaps.

The alphabet for nucleic acids is colored as follows

2-438

seqlogo

A Green

C Blue

G Yellow

T, U Red

The alphabet for proteins is colored according to chemical property as
follows

G S T Y C Q N (Polar) — Green

A V L I P W F M (Hydrophobic) — Orange

D E (Acidic) — Red

K R H (Basic) — Blue

Ambiguous symbols not in the list above are added to the logo and
colored purple.

DiplayInfo = seqlogo(Seqs)returns a cell array of unique symbols
in a sequence (Seqs) and the information weight matrix used for
graphically displaying the logo.

DisplayInfo = seqlogo(..., 'Displaylogo', DisplaylogoValue).
when Displaylogo is false, returns display information, but does not
draw the sequence logo.

seqlogo(..., 'Alphabet', AlphabetValue) selects the alphabet for
nucleotide sequences ('NT') or amino acid sequences ('AA'). The default
is 'NT'. If you provide amino acid sequences to seqlogo, you must
select 'AA' for the Alphabet.

seqlogo(..., 'Startat', StartatValue) specifies the starting
position for the sequences (Seqs). The default starting position is 1.

seqlogo(..., 'Endat', EndatValue) specifies the ending position
for the sequences (Seqs). The default ending position is the maximum
length of the sequences (Seqs).

2-439

seqlogo

seqlogo(..., 'SSCorrection', SSCorrectionValue). when
SSCorrection is false, no estimation is made for the number of bits.
A simple calculation of bits tends to overestimate the conservation at
a particular location. To compensate for this overestimation, when
SSCorrection is true, a rough estimate is applied as an approximate
correction. This correction works better when the number of sequences
is greater than 50. The default is true.

Reference

Schneider, T.D., Stephens, R.M., “Sequence Logos: A new way to display
consensus sequences,” Nucleic Acids Research, Vol. 18, pp. 6097-6100,
1990.

Examples 1 Get a series of aligned sequences.

S = {'ATTATAGCAAACTA',...
'AACATGCCAAAGTA',...
'ATCATGCAAAAGGA'}

2 Display the sequence logo.

seqlogo(S)

MATLAB draws a figure.

2-440

seqlogo

3 Notice that correction for small samples prevents you from seeing
columns with information equal to log2(4) = 2 bits, but you can
turn this adjustment off.

seqlogo(S,'sscorrection',false)

See Also Bioinformatics Toolbox functions seqconsensus, seqdisp, seqprofile

2-441

seqmatch

Purpose Find matches for every string in library

Syntax Index = seqmatch(Strings, Library)

Description Index = seqmatch(Strings, Library) looks through the elements of
Library to find strings that begin with every string in Strings. Index
contains the index to the first occurrence for every string in the query.
Strings and Library must be cell arrays of strings.

Examples lib = {'VIPS_HUMAN', 'SCCR_RABIT', 'CALR_PIG' ,'VIPR_RAT', 'PACR_MOUSE'
query = {'CALR','VIP'};
h = seqmatch(query,lib);
lib(h)

See Also MATLAB functions strmatch, regexp

2-442

seqneighjoin

Purpose Neighbor-joining method for phylogenetic tree reconstruction

Syntax Tree = seqneighjoin(Dist)
Tree = seqneighjoin(Dist, Method)
Tree = seqneighjoin(Dist, Method, Names)
seqneighjoin(..., 'PropertyName', PropertyValue,...)
seqneighjoin(..., 'Reroot', RerootValue)

Arguments
Dist Matrix or vector returned by the function seqpdist

Method Method to compute the distances between nodes. Enter
'equivar' (default), 'firstorder', or 'average'.

Names Vector of structures with the fields 'Header', 'Name',
or a cell array of strings. In all cases the number of
elements must equal the number of samples used to
generate the pairwise distances in Dist.

Description Tree = seqneighjoin(Dist) computes a phylogenetic tree object from
pairwise distances (Dist) between the species or products using the
neighbor-joining method.

Tree = seqneighjoin(Dist, Method) selects a method (Method) to
compute the distances of the new nodes to all other nodes at every
iteration. The general expression to calculate the distances between the
new node (n), after joining i and j and all other nodes (k), is given by

D(n,k) = a*D(i,k) + (1-a)*D(j,k) - a*D(n,i) - (1-a)*D(n,j)

This expression is guaranteed to find the correct tree with additive
data (minimum variance reduction).

The following table describes the values for Method.

2-443

seqneighjoin

'equivar'
(default)

Assumes equal variance and independence of
evolutionary distance estimates (a = 1/2). Such as
in Studier and Keppler, JMBE (1988).

'firstorder' Assumes a first-order model of the variances and
covariances of evolutionary distance estimates, 'a'
is adjusted at every iteration to a value between 0
and 1. Such as in Gascuel, JMBE (1997).

'average' New distances are the weighted average of previous
distances while the branch distances are ignored.

D(n,k) = [D(i,k) + D(j,k)] /2

As in the original neighbor-joining algorithm by
Saitou and Nei, JMBE (1987).

Tree = seqneighjoin(Dist, Method, Names) passes a list of names
(Names) to label the leaf nodes (e.g., species or products) in the
phylogenetic tree object.

seqneighjoin(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqneighjoin(..., 'Reroot', RerootValue), when RerootValue is
false, excludes rerooting the resulting tree. This is useful for observing
the original linkage order followed by the algorithm. By default
seqneighjoin reroots the resulting tree using the midpoint method.

References [1] Saitou N, Nei M (1987), “The neighbor-joining method: A new
method for reconstructing phylogenetic trees”, Molecular Biology and
Evolution. 4(4):406-25.

[2] Gascuel O (1997), “BIONJ: An improved version of the NJ algorithm
based on a simple model of sequence data”, Molecular Biology and
Evolution, 14:685-695.

2-444

seqneighjoin

[3] Studier JA, Keppler KJ (1988), “A note on the neighbor-joining
algorithm of Saitou and Nei”, Molecular Biology and Evolution,
5(6):729-31.

Examples 1 Load a multiple alignment of amino acids.

seqs = fastaread('pf00002.fa');

2 Measure the Jukes-Cantor pairwise distances.

dist = seqpdist(seqs,'method','jukes-cantor','indels','pair');

3 Build the phylogenetic using the neighbor-joining algorithm .

tree = seqneighjoin(dist,'equivar',seqs)
view(tree)

See Also Bioinformatics Toolbox functions multialign, phytree (object
constructor), seqlinkage (alternative method to create a phylogenetic
tree), seqpdist

Methods of phytree object reroot, view

2-445

seqpdist

Purpose Calculate pairwise distance between sequences

Syntax D = seqpdist(Seqs)
seqpdist(..., 'PropertyName', PropertyValue,...)
seqpdist(..., 'Method', MethodValue)
seqpdist(..., 'Indels', IndelsValue)
seqpdist(..., 'Optargs', OptargsValue)
seqpdist(..., 'PairwiseAlignment', PairwiseAlignmentValue)
seqpdist(..., 'JobManager', JobManagerValue)
seqpdist(..., 'WaitInQueue', WaitInQueueValue)
seqpdist(..., 'Squareform', SquareformValue)
seqpdist(..., 'Alphabet', AlphabetValue)
seqpdist(..., 'ScoringMatrix', ScoringMatrixValue)
seqpdist(..., 'Scale', ScaleValue)
seqpdist(..., 'GapOpen', GapOpenValue)
seqpdist(..., 'ExtendGap', ExtendGapValue)

Arguments
Seqs Cell array with nucleotide or amino acid

sequences.

MethodValue Property to select the method for calculating
pairwise distances.

IndelsValue Property to indicate treatment of gaps.

OptargsValue Property to pass required arguments by the
distance method selected with the property
Method.

PairwiseAlignmentValueProperty to force pairwise alignment.

JobManagerValue JobManager object representing an available
distributed MATLAB resource. Enter
a jobmanager object returned by the
Distributed Computing Toolbox function
findResource.

2-446

seqpdist

WaitInQueueValue Property to control waiting for a distributed
MATLAB resource to be available. Enter
either true or false. The default value is
false.

SquareFormValue Property to control formatting the output as a
square or triangular matrix.

AlphabetValue Property to select an alphabet. Enter either
'NT' for nucleotides or 'AA' for amino acids.

ScoringMatrixValue Property to select a scoring matrix for
pairwise alignment.

ScaleValue Property to select a scale factor for the scoring
matrix.

GapOpenValue Property to select a gap penalty.

ExtendedGapValue Property to select a penalty for extending a
gap.

Description D = seqpdist(Seqs) returns a vector D containing biological distances
between each pair of sequences stored in the M elements of the a cell
array of sequences (Seqs).

D is an 1-by-(M*(M-1)/2) row vector corresponding to the M*(M-1)/2
pairs of the M sequences in Seqs. The output D is arranged in the order
((2,1),(3,1),..., (M,1),(3,2),...(M,2),.....(M,M-1)). This is
the lower left triangle of the full M-by-M distance matrix. To get the
distance between the Ith and the Jth sequences for I > J, use the
formula D((J-1)*(M-J/2)+I-J). Seqs can also be a vector of structures
with the field Sequence or a matrix of chars.

seqpdist(..., 'PropertyName', PropertyValue,...) enters optional
arguments as property name/value pairs.

seqpdist(..., 'Method', MethodValue) selects a method
(MethodValue) to compute distances between every pair of sequences.

Distances defined for both nucleotides and amino acids:

2-447

seqpdist

'p-distance' Proportion of sites at which the two
sequences are different. p is close to 1 for
poorly related sequences and p is close to 0
for similar sequences.

d = p

'Jukes-Cantor'
(default)

Maximum likelihood estimate of the
number of substitutions between two
sequences. p is described with the method
'p-distance'.For nucleotides

d = -3/4 log(1-p * 4/3)

For amino acids

d = -19/20 log(1-p * 20/19)

'alignment-score' Distance (d) between two sequences (1, 2)
is computed from the pairwise alignment
score between the two sequences (score12),
and the pairwise alignment score between
each sequence and itself (score11, score22)
as follows:

d = (1-score12/score11)
* (1-score12/score22)

This option does not imply that prealigned
input sequences will be realigned, it
only scores them. Use with care; this
distance method does not comply with the
ultrametric condition. In the rare case
where the score between sequences is
greater than the score when aligning a
sequence with itself, then d = 0.

Distances defined only for nucleotides and no scoring of gaps:

2-448

seqpdist

'Tajima-Nei' Maximum likelihood estimate
considering the background nucleotide
frequencies. It can be computed from
the input sequences or given by setting
'Optargs' to [gA gC gG gT]. gA, gC, gG,
gT are scalar values for the nucleotide
frequencies.

'Kimura' Considers separately the transitional
and transversion nucleotide substitution.

'Tamura' Considers separately the transitional
and transversion nucleotide substitution
and the GC content. GC content can
be computed from the input sequences
or given by setting Optargs to the
proportion of GC content (scalar value
form 0 to 1).

'Hasegawa' Considers separately the transitional and
transversional nucleotide substitution
and the background nucleotide
frequencies. Background frequencies can
be computed from the input sequences
or given by setting the Optargs to [gA
gC gG gT].

'Nei-Tamura' Considers separately the transitional
substitution between purines, the
transitional substitution between
pyramidines and the transversional
substitution and the background
nucleotide frequencies. Background
frequencies can be computed from the
input sequences or given by setting the
Optargs to [gA gC gG gT].

2-449

seqpdist

Distances defined only for amino acids and no scoring of gaps:

'Poisson' Assumes that the number of amino acid
substitutions at each site has a Poisson
distribution.

'Gamma' Assumes that the number of amino acid
substitutions at each site has a Gamma
distribution with parameter 'a'. 'a'
can be set by 'Optargs'. The default
value is 2.

A user defined distance function can also be specified using @, for
example, @distfun, the distance function must be of the form:

function D = distfun(S1, S2, OptArgsValue)

The function distfun should take as arguments two same-length
sequences (NT or AA) plus zero or more additional problem-dependent
arguments in OptArgsValue, and returning a scalar that represents
the distance between S1 and S2.

seqpdist(..., 'Indels', IndelsValue) indicates how to treat sites
with gaps. Options are

• 'score' (default) — Scores these sites either as a point mutation or
with the alignment parameters depending on the method selected.

• 'pairwise-del' — For every pairwise comparison it ignores the
sites with gaps.

• 'complete-del' — Ignores all the columns in the multiple alignment
that contain a gap, this option is available only if a multiple
alignment was provided at the input Seqs.

seqpdist(..., 'Optargs', OptargsValue) passes optional arguments
required or accepted by some distance methods. Use a cell array
to pass more than one input argument (for example, the nucleotide

2-450

seqpdist

frequencies in the Tajima-Nei distance function can be specified instead
of computing them from the input sequences).

seqpdist(..., 'PairwiseAlignment', PairwiseAlignmentValue),
when PairwiseAlignmentValue is true, ignores multiple alignment of
the input sequences (if any) and forces a pairwise alignment of input
sequences. If the input sequences are not prealigned, this flag is set
automatically. Pairwise alignment can be slow for a large number of
sequences. The default value is false.

seqpdist(..., 'JobManager', JobManagerValue) distributes pairwise
alignments into a cluster of computers using the Distributed Computing
Toolbox. JobManagerValue is a jobmanager object such as the one
returned by Distributed Computing Toolbox function findResource.

seqpdist(..., 'WaitInQueue', WaitInQueueValue), when
WaitInQueueValue is true, multialign waits in the job manager queue
for an available worker. When WaitInQueueValue is false (default)
and there are no workers immediately available, multialign stops
and displays an error message. Use this property with the Distributed
Computing Toolbox and the multialign property WaitInQueue.

seqpdist(..., 'Squareform', SquareformValue), when
SquareFormValue is true, converts the output into a square formatted
matrix so that D(I,J) denotes the distance between the Ith and Jth
sequences. The output matrix is symmetric and has a zero diagonal.
Setting the property Squareform to true is the same as using the
function squareform in the Statistical Toolbox.

seqpdist(..., 'Alphabet', AlphabetValue) specifies whether the
sequences are amino acids ('AA') or nucleotides ('NT'). The default
value is 'AA'.

The remaining input properties are analogous to the function nwalign
and are used when the property PairwiseAlignment = true or the
property Method = 'alignment-score'. For more information about
these properties, see the functions nwalign.

2-451

seqpdist

seqpdist(..., 'ScoringMatrix', ScoringMatrixValue) specifies
the scoring matrix to be used for the alignment. The default value is
BLOSUM50 for amino acids and NUC44 for nucleotides.

seqpdist(..., 'Scale', ScaleValue) indicates the scale factor of the
scoring matrix to return the score using arbitrary units. If the scoring
matrix info also provides a scale factor, then both are used.

seqpdist(..., 'GapOpen', GapOpenValue) specifies the penalty for
opening a gap in the alignment. The default gap open penalty is 8.

seqpdist(..., 'ExtendGap', ExtendGapValue) specifies the penalty
for extending a gap in the alignment. If ExtendGap is not specified, then
extensions to gaps are scored with the same value as GapOpen.

Examples 1 Load a multiple alignment of amino acids.

seqs = fastaread('pf00002.fa');

2 For every possible pair of sequences in the multiple alignment, ignore
sites with gaps and score with the scoring matrix PAM250.

dist = seqpdist(seqs,'Method','alignment-score',...
'Indels','pairwise-delete',...
'ScoringMatrix','pam250')

3 Force the realignment of every pair of sequences ignoring the
provided multiple alignment.

dist = seqpdist(seqs,'Method','alignment-score',...
'Indels','pairwise-delete',...
'ScoringMatrix','pam250',...
'PairwiseAlignment',true)

4 Measure the ’Jukes-Cantor’ pairwise distances after realigning every
pair of sequences, counting the gaps as point mutations.

dist = seqpdist(seqs,'Method','jukes-cantor',...
'Indels','score',...
'Scoringmatrix','pam250',...

2-452

seqpdist

'PairwiseAlignment',true)

See Also Bioinformatics Toolbox

• functions — fastaread, dnds, dndsml, phytree (object constructor),
seqlinkage

• phytree object method — pdist

2-453

seqprofile

Purpose Calculate sequence profile from set of multiply aligned sequences

Syntax Profile = seqprofile(Seqs, 'PropertyName', PropertyValue ...)
[Profile, Symbols] = seqprofile(Seqs)
seqprofile(..., 'Alphabet', AlphabetValue)
seqprofile(..., 'Counts', CountsValue)
seqprofile(..., 'Gaps', GapsValue)
seqprofile(..., 'Ambiguous', AmbiguousValue),
seqprofile(..., 'Limits', LimitsValue)

Arguments
Seqs Set of multiply aligned sequences. Enter an

array of strings, cell array of strings, or an
array of structures with the field Sequence.

Alphabet Sequence alphabet. Enter 'NT' (nucleotides),
'AA' (amino acids), or 'none'. The default
alphabet is 'AA'.

When Alphabet is 'none', the symbol list
is based on the observed symbols. Every
character can be a symbol except for a hyphen
(-) and a period (.), which are reserved for gaps.

Count Property to control returning frequency (ratio
of counts/total counts) or counts. Enter either
true (counts) or false (frequency). The default
value is false.

Gaps Property to control counting gaps in a sequence.
Enter 'all' (counts all gaps), 'noflanks'
(counts all gaps except those at the flanks of
every sequence), or 'none'. The default value
is 'none'.

2-454

seqprofile

Ambiguous Property to control counting ambiguous
symbols. Enter 'Count' to add partial counts
to the standard symbols.

Limits Property to specify using part of the sequences.
Enter a [1x2] vector with the first position and
the last position to include in the profile. The
default value is [1,SeqLength].

Description Profile = seqprofile(Seqs, 'PropertyName', PropertyValue ...)
returns a matrix (Profile) of size [20 (or 4) x SequenceLength]
with the frequency of amino acids (or nucleotides) for every column in
the multiple alignment. The order of the rows is given by

• 4 nucleotides — A C G T/U

• 20 amino acids — A R N D C Q E G H I L K M F P S T W Y V

[Profile, Symbols] = seqprofile(Seqs) returns a unique symbol list
(Symbols) where every symbol in the list corresponds to a row in the
profile (Profile).

seqprofile(..., 'Alphabet', AlphabetValue) selects a nucleotide
alphabet, amino acid alphabet, or no alphabet.

seqprofile(..., 'Counts', CountsValue) when Counts is true, returns
the counts instead of the frequency.

seqprofile(..., 'Gaps', GapsValue) appends a row to the bottom of a
profile (Profile) with the count for gaps.

seqprofile(..., 'Ambiguous', AmbiguousValue), when Ambiguous
is 'count', counts the ambiguous amino acid symbols (B Z X) and
nucleotide symbols (R Y K M S W B D H V N) with the standard
symbols. For example, the amino acid X adds a 1/20 count to every row
while the amino acid B counts as 1/2 at the D and N rows.

seqprofile(..., 'Limits', LimitsValue) specifies the start and end
positions for the profile relative to the indices of the multiple alignment.

2-455

seqprofile

Examples seqs = fastaread('pf00002.fa');
[P,S] = seqprofile(seqs,'limits',[50 60],'gaps','all')

See Also Bioinformatics Toolbox functions fastaread, multialignread,
seqconsensus, seqdisp, seqlogo

2-456

seqrcomplement

Purpose Calculate reverse complement of nucleotide sequence

Syntax SeqRC = seqrcomplement(SeqNT)

Arguments
SeqNT Nucleotide sequence. Enter either a character string

with the characters A, T (U), G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers. You can also enter a structure with the field
Sequence.

Description seqrcomplement calculates the reverse complementary strand of a
DNA sequence.

SeqRC = seqrcomplement(SeqNT) calculates the reverse complementary
strand 3' –> 5' (A–>T, C–>G, G–>C, T–>A) for a DNA sequence and
returns a sequence in the same format as SeqNT. For example, if SeqNT
is an integer sequence then so is SeqRC.

Examples Reverse a DNA nucleotide sequence and then return its complement.

s = 'ATCG'
seqrcomplement(s)

ans =
CGAT

See Also Bioinformatics Toolbox functions codoncount, palindromes
seqcomplement, seqreverse, seqtool

2-457

seqreverse

Purpose Reverse the letters or numbers in nucleotide sequence

Syntax SeqR = seqreverse(SeqNT)

Arguments
SeqNT Enter a nucleotide sequence. Enter either a character

string with the characters A, T (U), G, C, and ambiguous
characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of
integers. You can also enter a structure with the field
Sequence.

SeqR Returns a sequence in the same format as the nucleotide
sequence. For example, if SeqNT is an integer sequence,
then so is SeqR.

Description seqreverse calculates the reverse strand of a DNA or RNA sequence.

SeqR = seqreverse(SeqNT) calculates the reverse strand 3’ –> 5’ of the
nucleotide sequence.

Examples Reverse a nucleotide sequence.

s = 'ATCG'
seqreverse(s)

ans =
GCTA

See Also Bioinformatics Toolbox functions seqcomplement, seqrcomplement,
seqtool

MATLAB function fliplr

2-458

seqshoworfs

Purpose Display open reading frames in sequence

Syntax seqshoworfs(SeqNT)
seqshoworfs(..., 'PropertyName', PropertyValue,...)
seqshoworfs(..., 'Frames', FramesValue)
seqshoworfs(..., 'GeneticCode', GeneticCodeValue)
seqshoworfs(..., 'MinimumLength', MinimumLengthValue)
seqshoworfs(..., 'AlternativeStartCodons', StartCodonsValue)
seqshoworfs(..., 'Color', ColorValue)
seqshoworfs(..., 'Columns', ColumnsValue)

Arguments
SeqNT Nucleotide sequence. Enter either a

character string with the characters A, T
(U), G, C, and ambiguous characters R, Y, K,
M, S, W, B, D, H, V, N, or a vector of integers.
You can also enter a structure with the field
Sequence.

FramesValue Property to select the frame. Enter 1, 2, 3,
-1, -2, -3, enter a vector with integers, or
'all'. The default value is the vector [1 2
3]. Frames -1, -2, and -3 correspond to the
first, second, and third reading frames for
the reverse complement.

GeneticCodeValue Genetic code name. Enter a code number or
a code name from the table see Genetic Code
on page 2-133.

MinimumLengthValue Property to set the minimum number of
codons in an ORF.

StartCodonsValue Property to control using alternative start
codons. Enter either true or false. The
default value is false.

2-459

seqshoworfs

ColorValue Property to select the color for highlighting
the reading frame. Enter either a 1-by-3
RGB vector specifying the intensity (0 to
255) of the red, green, and blue components
of the color, or a character from the following
list: 'b'—blue, 'g'—green, 'r'—red,
'c'—cyan, 'm'—magenta, or 'y'—yellow.

To specify different colors for the three
reading frames, use a 1-by-3 cell array of
color values. If you are displaying reverse
complement reading frames, then COLOR
should be a 1-by-6 cell array of color values.

ColumnsValue Property to specify the number of columns
in the output.

Description seqshoworfs identifies and highlights all open reading frames using
the standard or an alternative genetic code.

seqshoworfs(SeqNT) displays the sequence with all open reading
frames highlighted, and it returns a structure of start and stop positions
for each ORF in each reading frame. The standard genetic code is used
with start codon 'AUG' and stop codons 'UAA', 'UAG', and 'UGA'.

seqshoworfs(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqshoworfs(..., 'Frames', FramesValue) specifies the reading
frames to display. The default is to display the first, second, and third
reading frames with ORFs highlighted in each frame.

seqshoworfs(..., 'GeneticCode', GeneticCodeValue) specifies the
genetic code to use for finding open reading frames.

seqshoworfs(..., 'MinimumLength', MinimumLengthValue) sets the
minimum number of codons for an ORF to be considered valid. The
default value is 10.

2-460

seqshoworfs

seqshoworfs(..., 'AlternativeStartCodons', StartCodonsValue)
uses alternative start codons if AlternativeStartCodons is set to true.
For example, in the human mitochondrial genetic code, AUA and AUU are
known to be alternative start codons. For more details of alternative
start codons, see

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/
wprintgc.cgi?mode=t#SG1

seqshoworfs(..., 'Color', ColorValue) selects the color used to
highlight the open reading frames in the output display. The default
color scheme is blue for the first reading frame, red for the second, and
green for the third frame.

seqshoworfs(..., 'Columns', ColumnsValue) specifies how many
columns per line to use in the output. The default value is 64.

Examples Look for the open reading frames in a random nucleotide sequence.

s = randseq(200,'alphabet', 'dna');
seqshoworfs(s);

Identify the open reading frames in a GenBank sequence.

HLA_DQB1 = getgenbank('NM_002123');
seqshoworfs(HLA_DQB1.Sequence);

See Also Bioinformatics Toolbox functions codoncount, geneticcode, seqdisp,
seqshowwords, seqwordcount, cpgisland, seqtool

MATLAB function regexp

2-461

seqshowwords

Purpose Graphically display words in sequence

Syntax seqshowwords(Seq, Word)
seqshowwords(..., 'PropertyName', PropertyValue,...)
seqshowwords(..., 'Color', ColorValue)
seqshowwords(..., 'Columns', ColumnsValue)
seqshowwords(..., 'Alphabet', AlphabetValue)

Arguments
Seq Enter either a nucleotide or amino acid sequence.

You can also enter a structure with the field
Sequence.

Word Enter a short character sequence.

ColorValue Property to select the color for highlighted
characters. Enter a 1-by-3 RGB vector specifying
the intensity (0255) of the red, green, and blue
components, or enter a character from the following
list: 'b'– blue, 'g'– green, 'r'– red, 'c'– cyan,
'm'– magenta, or 'y'– yellow.

The default color is red 'r'.

ColumnsValue Property to specify the number of characters in a
line. Default value is 64.

AlphabetValue Property to select the alphabet. Enter 'AA' for
amino acid sequences or 'NT' for nucleotide
sequences. The default is 'NT'.

Description seqshowwords(Seq, Word) displays the sequence with all occurrences
of a word highlighted, and returns a structure with the start and stop
positions for all occurrences of the word in the sequence.

seqshowwords(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqshowwords(..., 'Color', ColorValue) selects the color used to
highlight the words in the output display.

2-462

seqshowwords

seqshowwords(..., 'Columns', ColumnsValue) specifies how many
columns per line to use in the output.

seqshowwords(..., 'Alphabet', AlphabetValue) selects the alphabet
for the sequence (Seq) and the word (Word).

If the search work (Word) contains nucleotide or amino acid symbols
that represent multiple possible symbols, then seqshowwords shows all
matches. For example, the symbol R represents either G or A (purines).
If Word is 'ART', then seqshowwords shows occurrences of both 'AAT'
and 'AGT'.

Examples This example shows two matches, ’TAGT' and 'TAAT', for the word
'BART'.

seqshowwords('GCTAGTAACGTATATATAAT','BART')

ans =
Start: [3 17]
Stop: [6 20]

000001 GCTAGTAACGTATATATAAT

seqshowwords does not highlight overlapping patterns multiple times.
This example highlights two places, the first occurrence of 'TATA’
and the 'TATATATA' immediately after 'CG'. The final 'TA' is not
highlighted because the preceding 'TA' is part of an already matched
pattern.

seqshowwords('GCTATAACGTATATATATA','TATA')

ans =
Start: [3 10 14]
Stop: [6 13 17]

000001 GCTATAACGTATATATATA

2-463

seqshowwords

To highlight all multiple repeats of TA, use the regular expression
'TA(TA)*TA'.

seqshowwords('GCTATAACGTATATATATA','TA(TA)*TA')

ans =
Start: [3 10]
Stop: [6 19]

000001 GCTATAACGTATATATATA

See Also Bioinformatics Toolbox functions palindromes, cleave, restrict,
seqdisp, seqtool, seqwordcount

MATLAB functions strfind, regexp

2-464

seqtool

Purpose Open interactive tool to explore biological sequences

Syntax seqtool(Seq)
seqtool(..., 'PropertyName', PropertyValue,...)
seqtool(..., 'Alphabet', AlphabetValue)

Arguments
Seq Struct with a field Sequence, a character array, or a

filename with an extension of .gbk, .gpt, .fasta, .fa, or .ebi

Description seqtool(Seq) loads a sequence (Seq) into the seqtool GUI.

seqtool(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

seqtool(..., 'Alphabet', AlphabetValue) specifies an alphabet
(AlphabetValue) for the sequence (Seq). The default value is 'AA'except
when all of the symbols in the sequence are A, C, G, T, and -, then
AlphabetValue is set to 'NT'. Use ’AA’ when you want to force an
amino acid sequence alphabet.

Example 1 Get a sequence from Genbank.

S = getgenbank('M10051')

2 Open the sequence tool window with the sequence.

seqtool(S)

2-465

seqtool

See Also Bioinformatics Toolbox functions aa2nt, aacount, aminolookup,
basecount, baselookup, dimercount, emblread, fastaread,
fastawrite, genbankread, geneticcode, genpeptread, getembl,
getgenbank, getgenpept, nt2aa, proteinplot, seqcomplement,
seqdisp, seqrcomplement, seqreverse, seqshoworfs, seqshowwords,
seqwordcount

2-466

seqwordcount

Purpose Count number of occurrences of word in sequence

Syntax seqwordcount(Seq, Word)

Arguments
Seq Enter a nucleotide or amino acid sequence of characters.

You can also enter a structure with the field Sequence.

Word Enter a short sequence of characters.

Description seqwordcount(Seq, Word) counts the number of times that a word
appears in a sequence, and then returns the number of occurrences of
that word.

If Word contains nucleotide or amino acid symbols that represent
multiple possible symbols (ambiguous characters), then seqwordcount
counts all matches. For example, the symbol R represents either
G or A (purines). For another example, if word equals 'ART', then
seqwordcount counts occurrences of both 'AAT' and 'AGT'.

Examples seqwordcount does not count overlapping patterns multiple times. In
the following example, seqwordcount reports three matches. TATATATA
is counted as two distinct matches, not three overlapping occurrences.

seqwordcount('GCTATAACGTATATATAT','TATA')

ans =
3

The following example reports two matches ('TAGT' and 'TAAT'). B
is the ambiguous code for G, T, or C, while R is an ambiguous code for
G and A.

seqwordcount('GCTAGTAACGTATATATAAT','BART')

ans =
2

2-467

seqwordcount

See Also Bioinformatics Toolbox functions codoncount, seqshoworfs,
seqshowwords, seqtool, seq2regexp

MATLAB functions strfind

2-468

showalignment

Purpose Sequence alignment with color

Syntax showalignment(Alignment)
showalignment(..., 'PropertyName', PropertyValue,...)
showalignment(..., 'MatchColor', MatchColorValue)
showalignment(..., 'SimilarColor' SimilarColorValue)
showalignment(..., 'StartPointers', StartPointersValue)
showalignment(..., 'Columns', ColumnsValue)

Arguments
Alignment For pairwise alignments, matches and

similar residues are highlighted and
Alignment is the output from one of
the functions nwalign or swalign. For
multiple sequence alignment highly
conserved columns are highlighted and
Alignment is the output from the function
multialign.

MatchColorValue Property to select the color to highlight
matching characters. Enter a 1-by-N RGB
vector specifying the intensity (0 to 255) of
the red, green, and blue components, or
enter a character from the following list:
'b'– blue, 'g'– green, 'r'– red, 'c'–
cyan, 'm'– magenta, or 'y'– yellow.

The default color is red, 'r'.

SimilarColorValue Property to select the color to highlight
similar characters. Enter a 1-by-3 RGB
vector or color character. The default color
is magenta.

2-469

showalignment

StarterPointersValue Property to specify the starting indices of
the aligned sequences. StartPointers is
the two element vector returned as the
third output of the function swalign.

ColumnsValue Property to specify the number of
characters in a line. Enter the number
of characters to display in one row. The
default value is 64.

Description showalignment(Alignment) displays an alignment in a MATLAB figure
window.

showalignment(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

showalignment(..., 'MatchColor', MatchColorValue) selects the
color to highlight the matches in the output display. The default color is
red. For example, to use cyan, enter 'c' or [0 255 255].

showalignment(..., 'SimilarColor' SimilarColorValue) selects
the color to highlight similar residues that are not exact matches. The
default color is magenta.

The following options are only available when showing pairwise
alignments:

showalignment(..., 'StartPointers', StartPointersValue)
specifies the starting indices in the original sequences of a local
alignment.

showalignment(..., 'Columns', ColumnsValue) specifies how many
columns per line to use in the output, and labels the start of each row
with the sequence positions.

Examples Enter two amino acid sequences and show their alignment.

[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD');
showalignment(Alignment);

2-470

showalignment

Enter a multiplyaligned set of sequences and show their alignment.

gag = multialignread('aagag.aln');
showalignment(gag)

See Also Bioinformatics Toolbox functions nwalign, swalign

2-471

showhmmprof

Purpose Plot Hidden Markov Model (HMM) profile

Syntax showhmmprof(Model)
showhmmprof(..., 'PropertyName', PropertyValue,...)
showhmmprof(..., 'Scale', ScaleValue)
showhmmprof(..., 'Order', OrderValue)

Arguments
Model Hidden Markov model created with the functions

gethmmprof and pfamhmmread functions.

ScaleValue Property to select a probability scale. Enter one of the
following values:

'logprob' — Log probabilities

'prob' — Probabilities

'logodds' — Log-odd ratios

OrderValue Property to specify the order of the amino acid
alphabet. Enter a character string with the 20
standard amino acids characters A R N D C Q E G H
I L K M F P S T W Y V. The ambiguous characters B
Z X are not allowed.

Description showhmmprof(Model) plots a profile hidden Markov model described by
the structure Model.

showhmmprof(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

showhmmprof(..., 'Scale', ScaleValue) specifies the scale to
use. If log probabilities (ScaleValue='logprob'), probabilities
(ScaleValue='prob'), or log-odd ratios (ScaleValue='logodds'). To
compute the log-odd ratios, the null model probabilities are used for
symbol emission and equally distributed transitions are used for the
null transition probabilities. The default ScaleValue is 'logprob'.

2-472

showhmmprof

showhmmprof(..., 'Order', OrderValue) specifies the order in which
the symbols are arranged along the vertical axis. This option allows
you reorder the alphabet and group the symbols according to their
properties.

Examples 1 Load a model example.

model = pfamhmmread('pf00002.ls')

2 Plot the profile.

showhmmprof(model, 'Scale', 'logodds')

3 Order the alphabet by hydrophobicity.

hydrophobic = 'IVLFCMAGTSWYPHNDQEKR'

4 Plot the profile.

showhmmprof(model, 'Order', hydrophobic)

See Also Bioinformatics Toolbox functions gethmmprof, hmmprofalign,
hmmprofestimate, hmmprofgenerate, hmmprofstruct, pfamhmmread

2-473

sptread

Purpose Read data from SPOT file

Syntax SPOTData = sptread('File')
sptread(..., 'PropertyName', PropertyValue,...)
sptread(..., 'CleanColNames', CleanColNamesValue)

Arguments
File SPOT formatted file (ASCII text file).

Enter a filename, a path and filename, or
URL pointing to a file. File can also be a
MATLAB character array that contains
the text for a SPOT file.

CleanColNamesValue Property to control using valid MATLAB
variable names.

Description SPOTData = sptread('File') reads a SPOT formatted file (’File’) and
creates a MATLAB structure (SPOTData) containing the following fields:

Header
Data
Blocks
Columns
Rows
IDs
ColumnNames
Indices
Shape

sptread(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

sptread(..., 'CleanColNames', CleanColNamesValue) The column
names in the SPOT file contain periods and some characters that
cannot be used in MATLAB variable names. If you plan to use the
column names as variable names in a function, use this option with

2-474

sptread

CleanColNames set to true and the function will return the field
ColumnNames with valid variable names.

The Indices field of the structure includes the MATLAB indices that
you can use for plotting heat maps of the data.

Examples 1 Read in a sample SPOT file and plot the median foreground intensity
for the 635 nm channel. Note that the example file spotdata.txt is
not provided with the Bioinformatics Toolbox.

spotStruct = sptread('spotdata.txt')
maimage(spotStruct,'Rmedian');

2 Alternatively, create a similar plot using more basic graphics
commands.

Rmedian = magetfield(spotStruct,'Rmedian');
imagesc(Rmedian(spotStruct.Indices));
colormap bone
colorbar

See Also Bioinformatics Toolbox functions affyread, agferead,
celintensityread, geosoftread, gprread, imageneread, maboxplot,
magetfield,

2-475

subtree (phytree)

Purpose Extract phylogenetic subtree

Syntax Tree2 = subtree(Tree1, Nodes)

Description Tree2 = subtree(Tree1, Nodes) extracts a new subtree (Tree2) where
the new root is the first common ancestor of the Nodes vector from Tree1.
Nodes in the tree are indexed as [1:NUMLEAVES] for the leaves and as
[NUMLEAVES+1:NUMLEAVES+NUMBRANCHES] for the branches. Nodes can
also be a logical array of following sizes [NUMLEAVES+NUMBRANCHES x
1], [NUMLEAVES x 1] or [NUMBRANCHES x 1].

Examples 1 Load a phylogenetic tree created from a protein family.

tr = phytreeread('pf00002.tree')

2 Get the subtree that contains the VIPS and CGRR human proteins.

sel = getbyname(tr,{'vips_human','cgrr_human'});
sel = any(sel,2);
tr = subtree(tr,sel)
view(tr);

See Also Bioinformatics Toolbox

• functions — phytree (object constructor)

• phytree object methods — get, getbyname, prune, select

2-476

svmclassify

Purpose Classify data using support vector machine

Syntax Group = svmclassify(SVMStruct, Sample)
svmclassify(..., 'PropertyName', PropertyValue,...)
svmclassify(..., 'Showplot', ShowplotValue)

Description Group = svmclassify(SVMStruct, Sample) classifies each row of the
data in Sample using the information in a support vector machine
classifier structure SVMStruct, created using the function svmtrain.
Sample must have the same number of columns as the data used to
train the classifier in svmtrain. Group indicates the group to which
each row of Sample has been assigned.

Note If a data point falls on the boundary line, it is classified as a 1.

svmclassify(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

svmclassify(..., 'Showplot', ShowplotValue) when Showplot is
true, plots the sample data on the figure created using the showplot
option in svmtrain.

Example 1 Load sample data.

load fisheriris

data = [meas(:,1), meas(:,2)];

2 Extract the Setosa class.

groups = ismember(species,'setosa');

3 Randomly select training and test sets

[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);

2-477

svmclassify

4 Use a linear support vector machine classifier.

svmStruct = svmtrain(data(train,:),groups(train),...
'showplot',true);

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

2-478

svmclassify

5 See how well the classifier performed.

classperf(cp,classes,test);
cp.CorrectRate

ans =
0.9867

6 If you have the Optimization Toolbox you can use a 1-norm soft
margin support vector machine classifier.

figure
svmStruct = svmtrain(data(train,:),groups(train),...

'showplot',true,'boxconstraint',1);

2-479

svmclassify

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

2-480

svmclassify

7 See how well the classifier performed.

classperf(cp,classes,test);
cp.CorrectRate

ans =
0.9933

References [1] Kecman, V, Learning and Soft Computing, MIT Press, Cambridge,
MA. 2001.

[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,
Vandewalle, J., Least Squares Support Vector Machines, World
Scientific, Singapore, 2002.

[3] Scholkopf, B., Smola, A.J., Learning with Kernels, MIT Press,
Cambridge, MA. 2002.

2-481

svmclassify

[4] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction
to Support Vector Machines and Other Kernel-based Learning
Methods, First Edition (Cambridge: Cambridge University Press).
http://www.support-vector.net/

See Also Bioinformatics Toolbox functions knnclassify, classperf,
crossvalind, svmtrain

Statistical Toolbox functions classify

Optimization Toolbox function quadprog

2-482

http://www.support-vector.net/

svmtrain

Purpose Train support vector machine classifier

Syntax SVMStruct = svmtrain(Training, Group)
svmtrain(..., 'PropertyName', PropertyValue,...)
svmtrain(..., 'Kernel_Function', Kernel_FunctionValue)
svmtrain(..., 'RBF_Sigma', RBFSigmaValue)
svmtrain(..., 'Polyorder', PolyorderValue)
svmtrain(..., 'Mlp_Params', Mlp_ParamsValue)
svmtrain(..., 'Method', MethodValue)
svmtrain(..., 'QuadProg_Opts', QuadProg_OptsValue)
svmtrain(..., 'BoxConstraint', BoxConstraintValue)
svmtrain(..., 'Autoscale', AutoscaleValue)
svmtrain(..., 'ShowPlot', ShowPlotValue)

Arguments
Training Matrix of training data.

Group Numeric vector, string array, or cell array of
strings for classifying data in Training into two
groups. It has the same length as Training
and defines two groups by specifying the group
to which each corresponding row in Training
belongs.

SVMStruct SVMStruct contains information about the
trained classifier that svmclassify uses for
classification. It also contains the support
vectors in the field SupportVector.

Description SVMStruct = svmtrain(Training, Group) trains a support vector
machine classifier (SVM) using data (Training) taken from two groups,
specified by Group. svmtrain treats NaNs or empty strings in Group as
missing values and ignores the corresponding rows of Training.

svmtrain(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

2-483

svmtrain

svmtrain(..., 'Kernel_Function', Kernel_FunctionValue) specifies
the kernel function (Kernel_FunctionValue) that maps the training
data into kernel space.Kernel_FunctionValue can be one of the
following strings or a function handle:

'linear' Linear kernel or dot product. Default value

'quadratic' Quadratic kernel

'polynomial' Polynomial kernel (default order 3)

'rbf' Gaussian radial basis function kernel

'mlp' Multilayer perceptron kernel (default scale 1)

Function handle A handle to a kernel function specified using @, for
example @kfun, or an anonymous function

A kernel function must be of the form

function K = kfun(U, V)

The returned value K is a matrix of size m-by-n, where U and V have m and
n rows respectively. If kfun is parameterized, you can use anonymous
functions to capture the problem-dependent parameters. For example,
suppose that your kernel function is

function K = kfun(U,V,P1,P2)
K = tanh(P1*(U*V')+P2);

You can set values for P1 and P2 and then use an anonymous function
as follows:

@(U,V) kfun(U,V,P1,P2)

svmtrain(..., 'RBF_Sigma', RBFSigmaValue) specifies the scaling
factor, sigma, in the radial basis function kernel. The default is 1.
RBFSigmaValue must be a positive number.

svmtrain(..., 'Polyorder', PolyorderValue) specifies the order of a
polynomial kernel. The default order is 3.

2-484

svmtrain

svmtrain(..., 'Mlp_Params', Mlp_ParamsValue)specifies the
parameters of the multilayer perceptron (mlp) kernel as a vector with
two parameters [p1, p2]. K = tanh(p1*U*V' + p2), p1 > 0, and p2
< 0. Default values are p1 = 1 and p2 = -1.

svmtrain(..., 'Method', MethodValue) specifies the method to find
the separating hyperplane. The options are

'QP' Quadratic programming (requires the Optimization Toolbox)

'LS' Least-squares method

Note If you installed the Optimization Toolbox, the 'QP' method is the
default. If not, the only available method is 'LS'.

svmtrain(..., 'QuadProg_Opts', QuadProg_OptsValue)allows you to
pass an options structure, created using optimset, to the Optimization
Toolbox function quadprog when using the 'QP' method. See the
optimset reference page for more details.

svmtrain(..., 'BoxConstraint', BoxConstraintValue) allows you
to set box constraints for the two-norm soft margin. It can be supplied
either as a strictly positive numeric scalar or as an array of strictly
positive values of the same length as Training. If it is supplied as a
scalar value, it is automatically rescaled by N/(2*N1) for the data points
of group one and by N/(2*N2) for the data points of group two. N1 is
the number of elements in group one, N2 is the number of elements
in group two, and N = N1 + N2. This rescaling is done to take into
account unbalanced groups, that is cases where N1 and N2 have very
different values. If the box constraints are supplied as an array, then
each array element is taken as a box constraint for the data point
with the same index. The default value for the box constraint is a

2-485

svmtrain

scalar value of

1
eps , which is appropriate only for separable data. In

realistic applications, an optimal value for the box constraint should be
determined for each classification problem using cross validation.

svmtrain(..., 'Autoscale', AutoscaleValue) controls the shifting
and scaling of data points before training. When AutoscaleValue is
true, the columns of the input data matrix Training are shifted to zero
mean and scaled to unit variance. Default is false.

svmtrain(..., 'ShowPlot', ShowPlotValue), when using
two-dimensional data and ShowPlotValue is true, creates a plot of the
grouped data and plots the separating line for the classifier.

Memory Usage and Out of Memory Error

When the function svmtrain operates on a data set containing N
elements, it creates an (N+1)-by-(N+1) matrix to find the separating
hyperplane. This matrix needs at least 8*(n+1)^2 bytes of contiguous
memory. Without that size of contiguous memory, MATLAB displays an
"out of memory" message.

Training an SVM with a large number of samples leads the function
to run slowly, and require a large amount of memory. If you run out
of memory or the optimization step is taking a very long time, try
using a smaller number of samples and use cross validation to test
the performance of the classifier.

Example 1 Load sample data.

load fisheriris

data = [meas(:,1), meas(:,2)];

2 Extract the Setosa class.

groups = ismember(species,'setosa');

3 Randomly select training and test sets

2-486

svmtrain

[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);

4 Use a linear support vector machine classifier.

svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

2-487

svmtrain

5 See how well the classifier performed.

classperf(cp,classes,test);
cp.CorrectRate

ans =
0.9867

6 If you have the Optimization Toolbox you can use a 1-norm soft
margin support vector machine classifier.

figure
svmStruct = svmtrain(data(train,:),groups(train),...

'showplot',true,'boxconstraint',1);

2-488

svmtrain

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

2-489

svmtrain

7 See how well the classifier performed.

classperf(cp,classes,test);
cp.CorrectRate

ans =
0.9933

References [1] Kecman, V, Learning and Soft Computing, MIT Press, Cambridge,
MA. 2001.

[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,
Vandewalle, J., Least Squares Support Vector Machines, World
Scientific, Singapore, 2002.

[3] Scholkopf, B., Smola, A.J., Learning with Kernels, MIT Press,
Cambridge, MA. 2002.

2-490

svmtrain

[4] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction
to Support Vector Machines and Other Kernel-based Learning
Methods, First Edition (Cambridge: Cambridge University Press).
http://www.support-vector.net/

See Also Bioinformatics Toolbox functions knnclassify, svmclassify

Statistics Toolbox functions classify

Optimization Toolbox functions optimset, quadprog

2-491

http://www.support-vector.net/

swalign

Purpose Locally align two sequences using Smith-Waterman algorithm

Syntax swalign(Seq1, Seq2)
[Score, Alignment] = swalign(Seq1, Seq2)
[Score, Alignment, Start] = swalign(Seq1, Seq2)
swalign(..., 'PropertyName', PropertyValue,...)
swalign(..., 'Alphabet', AlphabetValue)
swalign(..., 'ScoringMatrix', ScoringMatrixValue)
swalign(..., 'Scale', ScaleValue)
swalign(..., 'GapOpen', GapOpenValue)
swalign(..., 'ExtendGap', ExtendGapValue)
swalign(..., 'Showscore', ShowscoreValue)

Arguments
Seq1, Seq2 Nucleotide or amino acid sequences. Enter

a character string or vector of integers. You
can also enter a structure with the field
Sequence.

AlphabetValue Property to select an amino acid or
nucleotide sequences. Enter either 'AA' or
'NT'. The default value is 'AA'.

ScoringMatrixValue Property to select the scoring matrix.
Enter the name of a scoring matrix. Values
are 'PAM40’, 'PAM250', DAYHOFF, GONNET,
'BLOSUM30' increasing by 5 to 'BLOSUM90',
or 'BLOSUM62', or 'BLOSUM100'.

The default value when AlphabetValue
= 'aa' is 'BLOSUM50', while the default
value when AlphabeValue = 'nt' is
nuc44.

ScaleValue Property to specify a scaling factor for a
scoring matrix.

2-492

swalign

GapOpenValue Property to specify the gap open penalty.
Enter an integer for the gap penalty. Default
value is 8.

ExtendGapValue Property to specify the extended gap open
penalty. Enter an integer for the extended
gap penalty. The default value equals the
GapOpen value.

ShowscoreValue Property to control displaying the scoring
space and the winning path. Enter either
true or false. The default value is false.

Description swalign(Seq1, Seq2) returns the alignment score in bits for the
optimal alignment. The scale factor used to calculate the score is
provided by the scoring matrix. If this is not defined, then swalign
returns the raw score.

[Score, Alignment] = swalign(Seq1, Seq2) returns a 3-by-n
character array showing the two sequences and the local alignment
between them. Amino acids that match are indicated with the symbol |,
while related amino acids (nonmatches with a positive scoring matrix
value) are indicated with the symbol :.

[Score, Alignment, Start] = swalign(Seq1, Seq2) returns a 2-by-1
vector with the starting point indices where the alignment begins for
each sequence.

swalign(..., 'PropertyName', PropertyValue,...) defines optional
properties using property name/value pairs.

swalign(..., 'Alphabet', AlphabetValue) specifies whether the
sequences are amino acids ('AA') or nucleotides ('NT'). The default
value is 'AA'.

swalign(..., 'ScoringMatrix', ScoringMatrixValue) specifies the
scoring matrix to use for the alignment. The default is 'blosum50' for
Alphabet = 'AA' or 'NUC44' for Alphabet = NT.

2-493

swalign

swalign(..., 'Scale', ScaleValue) indicates the scale factor of the
scoring matrix to return the score using arbitrary units. If the scoring
matrix also provides a scale factor, then both are used.

swalign(..., 'GapOpen', GapOpenValue) specifies the penalty for
opening a gap in the alignment. The default gap open penalty is 8.

swalign(..., 'ExtendGap', ExtendGapValue) specifies the penalty
for extending a gap in the alignment. If ExtendGap is not specified, then
extensions to gaps are scored with the same value as GapOpen.

swalign(..., 'Showscore', ShowscoreValue) displays the scoring
space and the winning path.

Scores are ’raw’ scores which mean the final score is an accumulation
of using the scoring matrix values at each position of the alignment.
Accumulation means that it is the sum of the amino acid matches
(including the gap penalties). If the provided scoring matrix (or the one
used by default) has a Scale entry, then the score is returned in ’bits’.

Examples Return the score in bits and the local alignment using the default
ScoringMatrix ('BLOSUM50') and default values for the GapOpen and
ExtendGap values.

[Score, Alignment] = swalign('VSPAGMASGYD','IPGKASYD')

Score =
8.6667

Alignment =
PAGMASGYD
| | || ||
P-GKAS-YD

Align two amino sequences using a specified scoring matrix ('pam250')
and a gap open penalty of 5.

[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE',...
'ScoringMatrix', 'pam250',...

2-494

swalign

'GapOpen',5)

Score =
8

Alignment =
GAWGHE
:|| ||
PAW-HE

Align two amino sequences and return the Score in nat units (nats).

[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE',...
'Scale',log(2))

Score =
6.4694

Alignment =
AWGHE
|| ||
AW-HE

References [1] Durbin R. Eddy S, Krogh A, Mitchison G (1998), Biological Sequence
Analysis. Cambridge University Press.

[2] Smith T, Waterman M (1981), “Identification of common molecular
subsequences”, Journal Molecular Biology, 147:195-197.

See Also Bioinformatics Toolbox functions blosum, nt2aa, nwalign, pam,
seqdotplot, showalignment

2-495

traceplot

Purpose Draw nucleotide trace plots

Syntax traceplot(TraceStructure)
traceplot(A, C, G, T)
h = traceplot()

Description traceplot(TraceStructure) creates a trace plot from data in a
structure with fields A, C, G, T.

traceplot(A, C, G, T) creates a trace plot from data in vectors A,
C, G, T.

h = traceplot() returns a structure with the handles of the lines
corresponding to A, C, G, T.

Examples tstruct = scfread('sample.scf');
traceplot(tstruct)

See Also Bioinformatics Toolbox

• function — scfread

2-496

view (biograph)

Purpose Draw figure from biograph object

Syntax view(BGobj)
BGobjHandle = view(BGobj)

Arguments
BGobj Biograph object created with the function

biograph.

Description view(BGobj) opens a figure window and draws a graph represented by a
biograph object (BGobj). When the biograph object is already drawn in
the figure window, this function only updates the graph properties.

BGobjHandle = view(BGobj) returns a handle to a deep copy of the
biograph object (BGobj) in the figure window. When updating an
existing figure, you can use the returned handle to change object
properties programmatically or from the command line. When you close
the figure window, the handle is no longer valid. The original biograph
object (BGobj) is left unchanged.

Examples 1 Create a biograph object.

cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0 0];
bg = biograph(cm)

2 Render the biograph object into a Handles Graphic figure and get
back a handle.

h = view(bg)

3 Change the color of all nodes and edges.

set(h.Nodes,'Color',[.5 .7 1])
set(h.Edges,'LineColor',[0 0 0])

2-497

view (biograph)

See Also Bioinformatics Toolbox

• function — biograph (object constructor)

• biograph object methods — dolayout, getancestors,
getdescendants, getedgesbynodeid, getnodesbyid, getrelatives,
view

MATLAB

• functions — get, set

2-498

view (phytree)

Purpose View phylogenetic tree

Syntax view(Tree)
view(Tree, IntNodes)

Arguments
Tree Phylogenetic tree (phytree object) created with the

function phytree.

IntNodes Nodes from the phytree object to initially display in
the Tree.

Description view(Tree) opens the Phylogenetic Tree Tool window and draws a
tree from data in a phytree object (Tree). The significant distances
between branches and nodes are in the horizontal direction. Vertical
distances have no significance and are selected only for display purposes.
You can access tools to edit and analyze the tree from the Phylogenetic
Tree Tool menu bar or by using the left and right mouse buttons.

view(Tree, IntNodes) opens the Phylogenetic Tree Tool window
with an initial selection of nodes specified by IntNodes. IntNodes can be
a logical array of any of the following sizes: NumLeaves + NumBranches
x 1, NumLeaves x 1, or NumBranches x 1. IntNodes can also be a list of
indices.

Example tr = phytreeread('pf00002.tree')
view(tree)

See Also Bioinformatics Toolbox

• functions — phytree (object constructor), phytreeread,
phytreetool, seqlinkage, seqneighjoin

• phytree object method — plot

2-499

weights (phytree)

Purpose Calculate weights for phylogenetic tree

Syntax W = weights(Tree)

Arguments
Tree Phylogenetic tree (phytree object) created with

the function phytree.

Description W = weights(Tree) calculates branch proportional weights for every
leaf in a tree (Tree) using the Thompson-Higgins-Gibson method. The
distance of every segment of the tree is adjusted by dividing it by the
number of leaves it contains. The sequence weights are the result of
normalizing to unity the new patristic distances between every leaf
and the root.

Examples 1 Create an ultrametric tree with specified branch distances.

bd = [1 2 3]';
tr_1 = phytree([1 2;3 4;5 6],bd)

2 View the tree.

view(tr_1)

2-500

weights (phytree)

3 Display the calculated weights.

weights(tr_1)

ans =

1.0000
1.0000
0.8000
0.8000

References [1] Thompson JD, Higgins DG, Gibson TJ (1994), "CLUSTAL W:
Improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice," Nucleic Acids Research, 22(22):4673-4680.

[2] Henikoff S, Henikoff JG (1994), “Position-based sequence weights,”
Journal Molecular Biology, 243(4):574-578.

2-501

weights (phytree)

See Also Bioinformatics Toolbox

• functions — multialign, phytree (object constructor), profalign,
seqlinkage

2-502

Index

IndexA
aa2int function

reference 2-2
aa2nt function

reference 2-5
aacount function

reference 2-10
affyinvarsetnorm function

reference 2-14
affyread function

reference 2-22
agferead function

reference 2-25
aminolookup function

reference 2-27
atomiccomp function

reference 2-32

B
basecount function

reference 2-34
baselookup function

reference 2-38
biograph constructor

reference 2-41
blastncbi function

reference 2-48
blastread function

reference 2-56
blosum function

reference 2-58

C
celintensityread function

reference 2-60
classperf function

reference 2-64
cleave function

reference 2-68
clustergram function

reference 2-71
codonbias function

reference 2-75
codoncount function

reference 2-78
cpgisland function

reference 2-82
crossvalind function

reference 2-85

D
dayhoff function

reference 2-88
dimercount function

reference 2-89
dna2rna function

reference 2-92
dnds function

reference 2-95
dndsml function

reference 2-98
dolayout method

reference 2-93

E
emblread function

reference 2-100
exprprofrange function

reference 2-103
exprprofvar function

reference 2-104

F
fastaread function

reference 2-105
fastawrite function

Index-1

Index

reference 2-107
featuresmap

reference 2-109
functions

aa2int 2-2
aa2nt 2-5
aacount 2-10
affyinvarsetnorm 2-14
affyread 2-22
agferead 2-25
aminolookup 2-27
atomiccomp 2-32
basecount 2-34
baselookup 2-38
biograph constructor 2-41
blastncbi 2-48
blastread 2-56
blosum 2-58
celintensityread 2-60
classperf 2-64
cleave 2-68
clustergram 2-71
codonbias 2-75
codoncount 2-78
cpgisland 2-82
crossvalind 2-85
dayhoff 2-88
dimercount 2-89
dna2rna 2-92
dnds 2-95
dndsml 2-98
emblread 2-100
exprprofrange 2-103
exprprofvar 2-104
fastaread 2-105
fastawrite 2-107
featuresmap 2-109
galread 2-119
genbankread 2-120
geneentropyfilter 2-122

genelowvalfilter 2-124
geneont 2-126
generangefilter 2-131
geneticcode 2-133
genevarfilter 2-135
genpeptread 2-137
geosoftread 2-140
getblast 2-151
getembl 2-165
getgenbank 2-168
getgenpept 2-171
getgeodata 2-173
gethmmalignment 2-175
gethmmprof 2-177
gethmmtree 2-180
getpdb 2-187
goannotread 2-194
gonnet 2-196
gprread 2-197
hmmprofalign 2-200
hmmprofestimate 2-203
hmmprofgenerate 2-206
hmmprofmerge 2-208
hmmprofstruct 2-210
imageneread 2-216
int2aa 2-219
int2nt 2-221
isoelectric 2-224
jcampread 2-227
joinseq 2-230
knnclassify 2-231
knnimpute 2-237
maboxplot 2-241
maimage 2-245
mainvarsetnorm 2-247
mairplot 2-255
maloglog 2-257
malowess 2-259
manorm 2-261
mapcaplot 2-264

Index-2

Index

mattest 2-267
mavolcanoplot 2-272
molweight 2-311
msalign 2-279
msbackadj 2-286
msheatmap 2-300
mslowess 2-291
msnorm 2-296
msresample 2-302
mssgolay 2-306
msviewer 2-244 2-308
multialign 2-312
multialignread 2-321
multialignviewer 2-323
nmercount 2-324
nt2aa 2-326
nt2int 2-329
ntdensity 2-331
nuc44 2-333
num2goid 2-325
nwalign 2-334
oligoprop 2-337
palindromes 2-342
pam 2-344
pdbdistplot 2-346
pdbplot 2-348
pdbread 2-351
pfamhmmread 2-355
phytree constructor 2-356
phytreeread 2-361
phytreetool 2-362
phytreewrite 2-363
probelibraryinfo 2-368
probesetlink 2-369
probesetlookup 2-371
probesetplot 2-372
probesetvalues 2-373
profalign 2-375
proteinplot 2-378
quantilenorm 2-383

ramachandran 2-384
randfeatures 2-386
randseq 2-389
rankfeatures 2-392
rebasecuts 2-396
redgreencmap 2-398
restrict 2-403
revgeneticcode 2-407
rmabackadj 2-411
rmasummary 2-416
rna2dna 2-420
scfread 2-421
seq2regexp 2-426
seqcomplement 2-429
seqconsensus 2-430
seqdisp 2-432
seqdotplot 2-434
seqlinkage 2-436
seqlogo 2-438
seqmatch 2-442
seqneighjoin 2-443
seqpdist 2-446
seqprofile 2-454
seqrcomplement 2-457
seqreverse 2-458
seqshoworfs 2-459
seqshowwords 2-462
seqtool 2-465
seqwordcount 2-467
showalignment 2-469
showhmmprof 2-472
sptread 2-474
svmclassify 2-477
svmtrain 2-483
swalign 2-492
traceplot 2-496

G
galread function

Index-3

Index

reference 2-119
genbankread function

reference 2-120
geneentropyfilter function

reference 2-122
genelowvalfilter function

reference 2-124
geneont function

reference 2-126
generangefilter function

reference 2-131
geneticcode function

reference 2-133
genevarfilter function

reference 2-135
genpeptread function

reference 2-137
geosoftread function

reference 2-140
get method

reference 2-142
getancestors method

reference 2-144 2-147
getblast function

reference 2-151
getbyname method

reference 2-154
getcanonical method

reference 2-156
getdescendants method

reference 2-158 2-161
getedgesbynodeid method

reference 2-163
getembl function

reference 2-165
getgenbank function

reference 2-168
getgenpept function

reference 2-171
getgeodata function

reference 2-173
gethmmalignment function

reference 2-175
gethmmprof function

reference 2-177
gethmmtree function

reference 2-180
getmatrix method

reference 2-182
getnewickstr method

reference 2-183
getnodesbyid method

reference 2-185
getpdb function

reference 2-187
getrelatives method

reference 2-190 2-192
goannotread function

reference 2-194
gonnet function

reference 2-196
gprread function

reference 2-197

H
hmmprofalign function

reference 2-200
hmmprofestimate function

reference 2-203
hmmprofgenerate function

reference 2-206
hmmprofmerge function

reference 2-208
hmmprofstruct function

reference 2-210

I
imageneread function

Index-4

Index

reference 2-216
int2aa function

reference 2-219
int2nt function

reference 2-221
isoelectric function

reference 2-224

J
jcampread function

reference 2-227
joinseq function

reference 2-230

K
knnclassify function

reference 2-231
knnimpute function

reference 2-237

M
maboxplot function

reference 2-241
maimage function

reference 2-245
mainvarsetnorm function

reference 2-247
mairplot function

reference 2-255
maloglog function

reference 2-257
malowess function

reference 2-259
manorm function

reference 2-261
mapcaplot function

reference 2-264
mattest function

reference 2-267
mavolcanoplot function

reference 2-272
methods

dolayout 2-93
get 2-142
getancestors 2-144 2-147
getbyname 2-154
getdescendants 2-158 2-161
getedgesbynodeid 2-163
getmatrix 2-182
getnewickstr 2-183
getnodesbyid 2-185
getrelatives 2-190 2-192
pdist 2-353
plot 2-365
prune 2-381
reroot 2-399
select 2-423
subtree 2-476
view (biograph) 2-497
view (phytree) 2-499
weights 2-500

Methods
getcanonical 2-156

molweight function
reference 2-311

msalign function
reference 2-279

msbackadj function
reference 2-286

msheatmap function
reference 2-300

mslowess function
reference 2-291

msnorm function
reference 2-296

msresample function
reference 2-302

mssgolay function

Index-5

Index

reference 2-306
msviewer function

reference 2-244 2-308
multialign function

reference 2-312
multialignread function

reference 2-321
multialignviewer function

reference 2-323

N
nmercount function

reference 2-324
nt2aa function

reference 2-326
nt2int function

reference 2-329
ntdensity function

reference 2-331
nuc44 function

reference 2-333
num2goid function

reference 2-325
nwalign function

reference 2-334

O
oligoprop function

reference 2-337

P
palindromes function

reference 2-342
pam function

reference 2-344
pdbdistplot function

reference 2-346

pdbplot function
reference 2-348

pdbread function
reference 2-351

pdist method
reference 2-353

pfamhmmread function
reference 2-355

phytree constructor
reference 2-356

phytreeread function
reference 2-361

phytreetool function
reference 2-362

phytreewrite function
reference 2-363

plot method
reference 2-365

probelibraryinfo function
reference 2-368

probesetlink function
reference 2-369

probesetlookup function
reference 2-371

probesetplot function
reference 2-372

probesetvalues function
reference 2-373

profalign function
reference 2-375

proteinplot function
reference 2-378

prune method
reference 2-381

Q
quantilenorm function

reference 2-383

Index-6

Index

R
ramachandran function

reference 2-384
randfeatures function

reference 2-386
randseq function

reference 2-389
rankfeatures function

reference 2-392
rebasecuts function

reference 2-396
redgreencmap function

reference 2-398
reroot method

reference 2-399
restrict function

reference 2-403
revgeneticcode function

reference 2-407
rmabackadj function

reference 2-411
rmasummary function

reference 2-416
rna2dna function

reference 2-420

S
scfread function

reference 2-421
select method

reference 2-423
seq2regexp function

reference 2-426
seqcomplement function

reference 2-429
seqconsensus function

reference 2-430
seqdisp function

reference 2-432

seqdotplot function
reference 2-434

seqlinkage function
reference 2-436

seqlogo function
reference 2-438

seqmatch function
reference 2-442

seqneighjoin function
reference 2-443

seqpdist function
reference 2-446

seqprofile function
reference 2-454

seqrcomplement function
reference 2-457

seqreverse function
reference 2-458

seqshoworfs function
reference 2-459

seqshowwords function
reference 2-462

seqtool function
reference 2-465

seqwordcount function
reference 2-467

showalignment function
reference 2-469

showhmmprof function
reference 2-472

sptread function
reference 2-474

subtree method
reference 2-476

svmclassify function
reference 2-477

svmtrain function
reference 2-483

swalign function
reference 2-492

Index-7

Index

T
traceplot function

reference 2-496

V
view (biograph) method

reference 2-497

view (phytree) method
reference 2-499

W
weights method

reference 2-500

Index-8

	toc
	Functions – By Category
	Data Formats and Databases
	Trace Tools
	Sequence Conversion
	Sequence Utilities
	Sequence Statistics
	Sequence Visualization
	Pairwise Sequence Alignment
	Multiple Sequence Alignment
	Scoring Matrices
	Phylogenetic Tree Tools
	Phylogenetic Tree Methods
	Graph Visualization Methods
	Gene Ontology Functions
	Gene Ontology Methods
	Protein Analysis
	Profile Hidden Markov Models
	Microarray File Formats
	Microarray Utility Functions
	Microarray Data Analysis and Visualization
	Microarray Normalization and Filtering
	Statistical Learning
	Mass Spectrometry Preprocessing and Visualization

	Functions — Alphabetical List
	Creating a Circular Map with Legend
	Creating a Linear Map with Sequence Position Labels and Changed
	Determining Qualifiers for a Specific Feature

	Index

	tables
	Mapping Amino Acid Letters to Integers
	Genetic Code
	Standard Genetic Code
	Amino Acid Lookup Table
	Nucleotide Lookup Table
	Properties for a biograph Object
	Properties of the Nodes Property
	Properties of the Edge Property
	Values by Program
	Genetic Code
	Mapping Amino Acid Integers to Letters
	Mapping Nucleotide Integers to Letters
	Genetic Code
	Mapping Nucleotide Letters to Integers
	Genetic Code
	Nucleotide Conversions
	Amino Acid Conversion

